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Abstract—The newly emerged vehicular communication net-
work is seen as a key technology for solving the increasingly
serious vehicular traffic congestion as well as improving road
safety, and applications of vehicular networks are also emerging
at the same time. Predicting vehicular visiting time is vital to
both solving the vehicular system problem and building efficient
vehicular networking. It is an open and unsolved problem that
how much the vehicular staying duration of visits to different
areas can be predicted. In this paper, we use real vehicular
traces in Beijing and Shanghai and an area partition model to
explore the limit of predictability of the vehicular visiting time
in different areas in large scale cities and analyze the effect of
different precision and slot time on predictability. We conclude
that using a proper time slot is an efficient way of prediction
and a higher predictability can be achieved if the requirement
for precision is reduced. Among all the cases we study, we
find the highest potential predictability of 76.3% in Beijing and
82.5% in Shanghai in the case with smallest slot time and lowest
requirement for precision.

I. INTRODUCTION

Urban vehicular traffic congestion is an increasingly serious

problem which is significantly affecting many aspects of the

quality of metropolis life all around of the world [1]. Local

governments of large cities are continuing to test the capacities

of city roads, and make new adjustment and planning to

the existing transportation infrastructure, which attracts lots

of financial spending on increasing the capacities of the

cities’ transportation [2]. Scientific traffic engineering, which

achieves efficient resource management in the networks of

road and transportation system, becomes a hot research topic

attracting broad interests from many communities.

How to better deal with problems of transportation system is

very important, and newly emerged vehicular communication

network is seen as a key technology for helping relieving

the traffic congestion, and at the same time improving road

safety, by building intelligent transportation systems [3]. Re-

cently, as more and more vehicles are equipped with devices

to provide wireless communication capacities, interests on

vehicular communications and networks have grown signifi-

cantly [3]. Many applications of vehicular networks are also

emerging, including automatic collision warning, remote ve-

hicle diagnostics, emergency management and assistance for

safe driving, vehicle tracking, automobile high speed Internet

access, and multimedia content sharing. In the USA, Federal

Communications Commission has allocated 75 MHz of spec-

trum for dedicated short-range communications in vehicular

networks [4], and IEEE is also working on the related standard

specifications. Many consortia and standardisation bodies are

actively developing technologies and protocols for information

transmission between vehicles and roadside unit infrastructure

equipments.

It will come as little surprise that the vehicular transporta-

tion networks and the vehicular communication networks are

simultaneously making a conscious effort toward dealing with

transportation problems for urban cities in the intelligent trans-

portation systems. In terms of networks formed by vehicles,

which is the transportation system, we need to efficiently use

existing road network systems and information like vehicular

movements and distributions collected to make impacts on

reducing traffic congestion and travel delays, and further on

saving energy consumption and improving safety [5]. Thus,

effective and accurate real-time predictions of vehicular s-

taying duration in the city area are needed [1] to estimate

the vehicular traffic and further predict the congestion events.

While on the other hand, as for vehicular communication

networks [6], it is hard to maintain a connected and stable

network to communicate. Thus, they are usually distributed,

self-organized by mobile vehicles, and characterized by very

frequent movements and limited communication opportunities

in nodes mobility patterns. To this end, the capability of

predicting the time of a vehicle’s next movement can play

a significant role in lots of communication and networking

functions from bandwidth reservation to service provisioning.

Combing the above two aspects, we have identified that

vehicular staying duration prediction is vital to both solving

the vehicular system problem and building efficient vehic-

ular networking. Current, lots of works fall into the area

of prediction algorithms [7], [8]. However, how much the

vehicular staying duration can be predicted is an open and

unsolved problem. In this paper, we consider the problem of

the limit of predictability of the vehicular staying duration

in different areas in the large scale cities. Specifically, we



use intersections of city roads to divide the urban area and

get the staying duration of each vehicle in each area from

the vehicular traces. The questions we address here is that

are there regularities existing to govern the vehicular mobility

in terms of the staying time in each area, and how can

this regularities influence the predictability of their visiting

duration. Our contributions are summarized as follows.

1) We use linear interpolation to preprocess real vehicular

mobility traces from two large-scale vehicular datasets

in Shanghai and Beijing on which our work is based, and

propose a model by selecting hundreds of intersections

in Beijing and Shanghai and partitioning the two cities

by these intersections’ Voronoi cells.

2) We analyze the datasets and find regular time patterns

in the mass of data, which indicates the potential pre-

dictability in the staying duration of visits to each area.

3) We calculate the entropy and limits of predictability

of vehicles’ staying duration in each area for both

datasets and explore the effect of precision and slot

time on the predictability. We conclude that reducing the

precision and using proper time slot are both effective

ways of raising predictability, and we get the highest

potential predictability of 76.3% in Beijing and 82.5%

in Shanghai when we use smallest slot time and lowest

requirement for precision.

The rest of this paper is organized as follows. After present-

ing the related work in Section II, we introduce the datasets we

used and the preprocessing in Section III. Our model and the

problem is described in Section IV. Section V acts as a brief

introduction to the our methodology and our calculation results

and analysis are shown in Section VI. Finally, we conclude the

paper in Section VII.

II. RELATED WORK

Some mobility models for vehicular networks have been

proposed by previous works. In [9], Ali et al. have made an

adaptation of the model MBMM which is aimed at studying

human mobility, and presented V-MBMM. Based on real GPS

trace data from taxis, META [10] is a model for simulating

movement of taxis in a metropolis. Inspired by product-

form queuing networks, Mohimani et al. designed a mobil-

ity model representing a sparse situation for VANETs [11].

Besides these, there are also generators of mobility patterns

for VANETs such as MOVE [12] and Citymob [13], which

can be used to create various mobility scenarios. Although

there are such ready-made models for VANETs existed, they

are unsuited and too complicated for our work focused on

prediction calculation and analysis. Therefore, we adopt a

simple but effective model established on our area partition

method.

Prediction is another major research topic in the domain

of vehicular networks. There is a concept named lifetime in

previous works similar to the staying duration in this paper.

In [14], the lifetime is defined as the duration time that two

vehicles spending in the communication range of each other,

which can be seen as the lifetime of a link. On the other hand,

Wan et al. in their work [15] used the concept of lifetime of

a routing path which consists of several links connected end

to end. The stay time in [16] has almost the same meaning to

the staying duration in our work. It is worth pointing out that

all of these works calculate the duration or time based on the

location and speed of the vehicles. In this paper, however, we

evaluate the staying duration by vehicles’ mobility histories

and focus on the fundamental question that to what degree

can the staying duration be predicted.
The way we calculate the limits of predictability in our work

is previously used by Song et al. when dealing with human

mobility [17]. Nevertheless, there are three main differences

between their work and ours: (1) we explore the predictability

in vehicles’ staying duration to different areas in this paper,

which has entirely distinct properties compared with human

mobility; (2) our work is based on real taxi traces gathered by

GPS devices, while their data is collected on mobile network

carriers; (3) we study the influence of precision and slot time

on predictability, which is not included in their analysis.

III. DATASETS AND PREPROCESSING

As the foundation of our entire work, vehicular mobility

traces in Shanghai and Beijing are of great importance to our

calculation and analysis. In order to explain the problem and

our model, we first give a general idea of these two large-scale

datasets should be given first.
In the Shanghai dataset [18] and Beijing dataset, the data

was recorded by GPS devices deployed on taxis in the city of

Shanghai and Beijing and collected through GPRS. The data

intervals in different situations and vehicle numbers of the

two datasets are shown in Table I. To our knowledge, Beijing
dataset is so far the largest dataset existed of vehicular traces.

Data Interval (second)

Dataset
passengers onboard no passenger

Vehicle Number

Shanghai 60 15 2,109

Beijing 128 128 27,000

TABLE I
DATA INTERVAL AND VEHICLE NUMBER OF Beijing AND Shanghai

DATASETS

Besides the taxi’s current position represented by the lon-

gitude and latitude coordinates, each report also contains the

taxi’s ID, instantaneous velocity and heading, and a timestamp.

Before we use the traces in the datasets, we first preprocess

them to reduce the inconvenience brought by the various data

intervals. Some location points are inserted with the method of

linear interpolation (LI) and some original points are deleted so

that the points have a sampling time of 10 seconds. To validate

the traces and our preprocessing, we plot all the preprocessed

traces and find that they match the real roads on the city maps

pretty well.

IV. PROBLEM AND MODEL DESCRIPTION

Our goal here is to explore regular patterns and measure

predictability of vehicle mobility in the traces. This problem



Fig. 1. Illustration of area partition using Voronoi cell: 10 points and their
Voronoi cells.

have two aspects: location and time. The location aspect rep-

resents the location selection of vehicles, while the time aspect

considers the staying duration to each area. In this paper,

we focus on the time aspect and discuss our calculation and

analysis about the predictability of vehicles’ staying duration

to different areas in Beijing and Shanghai datasets.

Because the staying duration is to some extent a reflection of

the traffic condition nearby, it should be studied for every area

instead of every vehicle. For each area, we assume that it has

been visited for n times in the past. Denote its time history by

hn = {T1, T2, . . . , Tn}, where Tk corresponds to the staying

duration of the kth visit to the area for 1 ≤ k ≤ n. With the

knowledge of an area’s time history hn, we are curious about

the question that what role does randomness play in vehicles’

choosing their staying duration in that area and to what degree

is the staying duration predictable. To answer this question, we

calculate fundamental limits of the predictability in vehicles’

staying duration and explore influence of precision and slot

time on the potential predictability.

As our work is not focused on model designing, we base our

analysis on a simple but effective model. We divide the city of

Shanghai and Beijing into 559 and 760 areas respectively using

main intersections within coverage of the traces. Each area i is

defined as the Voronoi cell of the corresponding intersection

Ai, which consists of every point whose distance to Ai is less

than or equal to its distance to any other intersection [19]. 10

points and the corresponding Voronoi cells are shown in Fig. 1

for a better understanding of the concept.

To further reduce the complexity of our analysis, we then

turn each vehicle’s complete trace into a sequence consists of

items in chronological order. Every item includes an area’s

index, the moment of entering it and the staying duration in

it. Since the preprocessed traces have interval of 10 seconds,

we further use the LI method to better estimate the entering

moment and staying duration. To illustrate how this LI method

works, consider we have two pieces of successive location

information of one taxi in the preprocessed traces with the

locations l1 and l2 recorded at the time points t1 < t2.

Suppose l1 and l2 belong to two different areas i1 and

i2, whose corresponding intersections have locations at A1

and A2. With the estimation accuracy set to 1 second, we

divide the time between t1 and t2 into ten equal parts by

t1,1 < t1,2 < · · · < t1,9 and rename t1 and t2 to t1,0 and

t1,10. Hence, t1,0, t1,1, t1,2, · · · , t1,9, t1,10 are 11 increasing

successive integers. We calculate the location l1,j at t1,j
(1 � j � 9) by the following LI

l1,j =
t1,10 − t1,j
t1,10 − t1,0

· l1 + t1,j − t1,0
t1,10 − t1,0

· l2. (1)

Rename l1 and l2 to l1,0 and l1,10. ∃jmin, jmin ∈
{0, 1, . . . , 10}, s.t. |dis(l1,jmin , A1) − dis(l1,jmin , A2)| =
min
j

|dis(l1,j , A1) − dis(l1,j , A2)|, where dis(A,B) is the

distance between locations A and B. The moment of entering

area i2 can be estimated as t1,jmin
. After we estimate the

starting time of every visit to every area, we can readily

calculate the staying duration by subtraction. Because we add

an item to the sequence only when there is a change of visiting

area of the vehicle, every successive two items have different

area indexes.

In our data, the accuracy of the staying duration is set to 1

second. But sometimes we do not need our prediction to be

that precise, hence we introduce a parameter μ to our model,

which represents the minimum unit of staying duration under

our discussion, in other words, the precision. The higher μ
is, the lower the precision is. We base our analysis on five

scenarios with μ set to 1, 5, 10, 30 and 60 seconds respectively.

To better illustrate this parameter, consider the case with μ =
5s. We call staying duration which is multiple of 5 as legal

duration. Then we round each staying duration in the datasets

to its nearest legal duration and use the new value in our

calculation later. In this case, any predictive algorithm can

only predict legal staying duration. Therefore, the larger μ is,

the less possible number of values the staying duration could

take.

To study the prediction of staying duration in more detail,

we bring the concept of time slot into our work. We divide 24

hours of one day into several time slots with equal length and

assume that the traffic condition of an area remains almost the

same in each time slot for different days. We denote the slot

time by τ and set it to 10, 30 and 60 minutes respectively

in analyzing the predictability. To compare the difference of

predictability before and after we introduce time slot, we also

analyze the unslotted case.

V. METHODOLOGY

Entropy is a quantity characterizing the uncertainty of

a random variable within the scope of information theory

[20]. The entropy of a discrete random variable X whose

possible values are {x1, . . . , xn} is defined as H(X) ≡
−∑n

i=1 p(xi) log2 p(xi), where p(X) is the probability mass

function. Take n = 2 for example, if p(x1) = 0 and p(x2) = 1,

H(X) = 0 and X is entirely predictable for it always gets the

value of x2. However, there are no way for us to predict the

next value of X with high accuracy if p(x1) = p(x2) = 0.5,

in which case the entropy is 1, because the two values appear

randomly with equal probabilities. In this sense, entropy can

tell a lot about predictability. For a time series, the lower its



entropy is, the less random it is, and the more predictable the

next element is. Fundamentally, entropy can act as an efficient

measurement of the degree of predictability [21].

For an area i, denote the number of distinct staying durations

in its time history by Ni. We define the area’s entropy as

Si ≡ −∑Ni

j=1 pi(j) log2 pi(j), where pi(j) is the historical

probability that staying duration j appeared at area i. Based

on the entropy, we calculate the limits of predictability in

vehicular staying duration with a method previously used in

dealing with human mobility [17]. A brief introduction to the

methodology is given first.

For an area with time history hn−1, let ω(hn−1) be the

best accuracy that any prediction algorithm can achieve with

the knowledge of the history. The predictability in the staying

duration of impending n’s visit can be defined as

Ω(n) ≡
∑

hn−1

P (hn−1)ω(hn−1), (2)

where P (hn−1) is the probability of observing the particular

history hn−1. Based on this, the overall predictability of the

area is defined as

Ω ≡ lim
n→∞

1

n

n∑

i=1

Ω(i). (3)

Consider an area with N possible staying durations and entropy

S, it has been proven [17] that the predictability Ω’s upper

bound Ωmax can be calculated by

S =− [Ωmax log2 Ωmax + (1− Ωmax) log2(1− Ωmax)]

+ (1− Ωmax) log2(N − 1).
(4)

For an area with Ωmax = 0.6, 60% of the visits to

that area last for a duration that may be predicted, and the

staying duration to the rest 40% of the visits appear to

be random. In other words, no prediction algorithm in the

world can attain an accuracy better than 60% in the long run

when predicting staying duration in that area. Hence, Ωmax

measures the fundamental limit of the area’s predictability in

staying duration.

VI. RESULTS AND ANALYSIS

In this section, we present our calculation and analysis

results. First, we analyze the traces in the two datasets and

find that there are potential time patterns hidden beneath the

surface. We then calculate the entropy and give the limits

of predictability in vehicles’ staying duration. To explore the

effect of slot time and precision on this predictability, we also

make comparisons among different cases.

A. Time Pattern

To explore the time pattern in the traces, we study the

area staying duration of a single area. An area is randomly

selected from the most crowded 50 areas respectively in both

cities. We then divide each day into 12 time slots, with every

slot covering 2 consecutive hours. After that, we calculate the
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Fig. 2. Average staying duration of one single area in Beijing and Shanghai
datasets.

average staying duration of visits to the selected area in every

time slot every 5 days in Beijing and 7 days in Shanghai (see

Fig. 2(a) and Fig. 2(b)). In these two figures, we can clearly

find that the average staying duration follows the same pattern

over different days and the morning and evening peaks can be

recognized easily. The traffic condition deteriorates between

8 : 00 ∼ 12 : 00 and 16 : 00 ∼ 19 : 00 in Beijing dataset

while between 6 : 00 ∼ 9 : 00 and 18 : 00 ∼ 21 : 00
in Shanghai dataset. From the time pattern we find in the

traces, we are able to claim with certainty, that there is some

potential predictability in the staying duration of visits to an

area. Therefore, it does make sense to calculate the limits of

this predictability.

B. Entropy and Limits of Predictability

We explore the entropy and limits of predictability in staying

duration for all cases. In the slotted cases with τ of 10, 30

and 60 minutes, we calculate the desired value for each time

slot of each area. However, in the unslotted cases, we only do

the calculation for each area. For every slot time (including

unslotted), we further divide it into five cases with μ set to

1, 5, 10, 30 and 60 seconds. Therefore, we do calculation for

4× 5 = 20 cases in total.

We first study the precision μ’s influence on entropy S and

limit of predictability Ωmax. Holding the slot time τ constant,

we plot the distributions of S and Ωmax with different μ
together. The results for the unslotted case are shown in

Fig. 3. We notice unidirectional shifts of distributions with

the increasing of μ in both datasets. Theoretically, the larger

μ is, the less the number of legal staying duration is, the

smaller S is, and the higher Ωmax is. We can see that the

calculation results fit this relationship quite well. We then plot

the variation tendencies of Ωmax along with μ for different

slot time τ in Fig. 4. Clearly, the tendencies are almost the

same for different τ .

Next, we evaluate the effect of slot time τ on Ωmax. With

μ fixed, we compare the distributions of Ωmax with different

τ . In Fig. 5, we can see that a higher predictability can be

attained when time slots are used, and Ωmax grows with the

decrease of slot time τ . This proves that dividing one day

into different time slots can help us better predict the staying

duration of visits to each area. Here we have to explain that

although a higher Ωmax is attained for a smaller τ , this does

not mean that we should use a slot time as small as possible.
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Fig. 3. Distributions of Entropy S and limits of predictability Ωmax of the unslotted cases with different precision μ in Beijing and Shanghai datasets.
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Fig. 4. Variation tendencies of limits of predictability Ωmax along with
precision μ for different slot time τ in Beijing and Shanghai datasets.

For a τ too small, there may be too few previous visits to the

areas which we can use as history for the prediction. And to

make matters worse, the slight fluctuation may invalidate the

assumption that the staying duration of an area follows the

same pattern in each time slot for different days. Therefore,

a proper slot time must be carefully selected to maximize the

predictability within the allowed range. We leave this question

for future work as it is not the focus of this paper.

To find the variation tendencies of Ωmax along with τ for

different precision μ, we compare the results in Fig. 6. It can

be seen that the smaller μ is, the more Ωmax can be improved

when using time slot and reducing the slot time τ . This is

valid because Ωmax grows together with μ, which makes the

potentiality to further improve Ωmax getting smaller. Similarly,

we can make choices on whether to use time slot and how
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Fig. 5. Distributions of limits of predictability Ωmax with μ = 1s for
different slot time τ in Beijing and Shanghai datasets.

unslotted 60min 30min 10min
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ

Ω
m

ax

μ=1s
μ=5s
μ=10s
μ=30s
μ=60s

(a) Beijing

unslotted 60min 30min 10min

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ

Ω
m

ax

μ=1s
μ=5s
μ=10s
μ=30s
μ=60s

(b) Shanghai

Fig. 6. Variation tendencies of limits of predictability Ω along with slot time
τ for different precision μ in Beijing and Shanghai datasets.

much τ should be based on the improvement of Ωmax after

the precision μ is set as required.

According to the tendencies stated above, we get the small-
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est entropy S and the highest limit of predictability Ωmax

in the case with τ = 10min and μ = 60s. In this case,

we plot the P (S) of both datasets together in Fig. 7(a) and

P (Ωmax) in Fig. 7(b) for further analysis and comparison. In

Fig. 7(a), P (S) peaks at S ≈ 1.92 and S ≈ 1.49 in Beijing
and Shanghai respectively. That is to say, on average, we are

able to narrow down the range of possible staying duration of

visits to an area to 21.92 ≈ 3.78 and 21.49 ≈ 2.81. In Fig.

7(b), the peak of P (Ωmax) is located at 0.763 in Beijing and

0.825 in Shanghai, which implies that, respectively, 76.3%

and 82.5% of the visits to an area last for a duration that may

be predicted. Meanwhile, we can also conclude that vehicles

in Shanghai have higher potential predictability than ones in

Beijing, which accords with the common sense that drivers in

Shanghai are better-behaved on the road than those in Beijing.

In the above analysis, we find that lowering the requirement

for precision and using small time slot within allowed range

can both raise the potential predictability. We get the highest

potential predictability of 76.3% in Beijing and 82.5% in

Shanghai when we use smallest slot time and lowest require-

ment for precision among all our cases and conclude that

vehicles in Shanghai are more predictable than that in Beijing

in general.

VII. CONCLUSIONS

In this paper, we use two datasets of vehicular traces col-

lected in Shanghai and Beijing to study the time patterns and

limits of predictability in staying duration of vehicles’ visits

to different areas. We calculate the limits of predictability in

many cases to explore the effect of different precision and

time slot on predictability. The results showed that a higher

predictability can be achieved if the requirement for precision

is reduced, and using time slot is an efficient way of prediction.

There are still many problems remained for further solu-

tions. How to select the optimal precision and slot time is

a question worth future discussion. Based on these optimal

values, a more effective predictive algorithm for staying dura-

tion may be proposed to attain the limits of predictability we

calculated.
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