
ISAAC: Intelligent Synchrophasor Data Real-Time

Compression Framework for WAMS

Wenyu Ren∗, Timothy Yardley∗ and Klara Nahrstedt∗

∗ University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Email: {wren3, yardley, klara}@illinois.edu

Abstract—Wide-Area Monitoring Systems (WAMS) have been
widely accepted to provide real-time monitoring, protection, and
control of power systems. The huge and rapidly increasing data
volume in WAMS imposes a heavy burden on the communication
and storage systems and could become the bottleneck for many
real-time smart grid applications. This paper presents a frame-
work for intelligent lossy compression in a real-time manner
for synchrophasor data in WAMS. The proposed method is
capable of achieving good compression ratios without introducing
impractical delays and sacrificing much accuracy. Because distur-
bance data has much stricter delay and fidelity requirements, an
early disturbance detection technique is introduced to identify
disturbance data and handle it differently. The performance
of the method is demonstrated by experiment results on real
synchrophasor data collected from multiple substations.

I. INTRODUCTION

Recently, Wide-Area Monitoring Systems (WAMS) are be-

coming more and more widely accepted because of their abil-

ity to monitor, protect and control power systems over large

areas in real time. WAMS’s capability to support real-time

decision-making applications is based on the high reporting

rates and precise time synchronization provided by the new

data acquisition technology of phasor measurement. Allowed

by the emerging and development of Phasor Measurement

Units (PMUs), frequency, current, and voltage can be mea-

sured at a rate of 30 Hz or higher, much faster than in the con-

ventional Supervisory Control and Data Acquisition (SCADA)

systems, where samples are taken only every few seconds. The

generated measurements are called synchrophasors, namely

synchronized phasors, since they contain both magnitudes

and phase angles, and are precisely time-synchronized by

the Global Positioning System (GPS) technology. The syn-

chrophasors generated by PMUs over wide-area power sys-

tems can serve as snapshots of the system status and can be

further utilized for real-time wide-area monitoring, protection,

and control. For instance, PMU data can aid or gradually

replace the state estimation process which is a key function in

supervisory control of power grids, since the accurate status

information of the grid can be directly acquired from the real-

time synchrophasors.

Since PMUs have very high sampling rates and usually

multiple data channels, the volume of measurements collected

is huge. 100 PMUs of 20 measurements, each running at 30

Hz, will generate over 50 GB of data per day [1]. 3500 data

channels of 34 PMUs running at 100 Hz in Southwest China

produce over 120 GB of data per day [2]. As the scale of

power systems and WAMS grows, the number of PMUs is

also growing rapidly to provide finer-grained global state of

the more volatile power systems. For instance, the deployment

of PMUs in North America has largely increased from only

200 research-grade PMUs in 2009 to almost 1700 production-

grade PMUs in 2014 [3]. Besides the number of PMUs, the

number of measurements at each PMU is also growing as

more grid parameters get included for monitoring, from several

synchrophasors to tens of them. Due to the higher sampling

rate of modern PMUs, the increase in the number of PMUs

and measurements per PMU, we can surely expect a multi-

fold expansion in the already large volumes of synchrophasor

data in WAMS.

The synchrophasor data generated by PMUs need to be

transmitted in the underlying communication systems in real

time and stored in control centers for archive purpose (histo-

rian). The huge and ever-increasing volume of synchrophasor

data introduces tremendous storage and bandwidth capacity

requirement for WAMS. Therefore, it is necessary to use data

compression techniques to lighten the heavy burden on the

storage and communication systems. Many works of power

data compression focus on the compression for storage or

offline bulk transmission [4]–[10]. However, we argue that

online data compression for real-time transmission should be

addressed as much, if not more, than offline compression. If

not handled carefully, the huge data volume in the communi-

cation system could result in frequent and severe congestion.

The WAMS applications could suffer a lot from the extremely

long delays or high packet loss rates that follow the congestion.

The two main challenges for designing real-time compres-

sion frameworks in WAMS are as follows:

• Delay: The data should be compressed in a real-time

manner. In other words, the delay matters. Most existing

compression techniques use large sampling windows to

achieve better compression performance, which is a lux-

ury that real-time compression techniques cannot afford.

• Disturbance: The delay and accuracy requirements of

data during disturbance1 are different from those in

normal status. Thus it is necessary to treat disturbance

data and normal data differently in compression, which

requires the early detection of disturbances to be incor-

porated into the compression framework.

1Disturbances in this paper means transients in measurements that may be
caused by misoperations, faults, topology changes, load and source dynamics.

In this paper, we propose an Intelligent Synchrophasor dAta

reAl-time Compression framework for WAMS named ISAAC.

Combining the Principal Component Analysis (PCA) and Dis-

crete Cosine Transform (DCT), ISAAC has the capability of

largely improving the efficiency of communication and storage

systems via data compression while maintaining strong data

fidelity. A disturbance detector allows ISAAC to differentiate

normal and disturbance data and process them in different

ways. Two core techniques, which are the transformation

matrix reuse in PCA and the self-adapt principal component

number selection, allows ISAAC to achieve a good compres-

sion ratio (CR) without introducing an impractical delay.

The remainder of this paper is organized as follows: Sec-

tion II reviews the related work. Section III provides some

background and explains the two compression algorithms used

by our approach. Section IV describes the design of ISAAC.

Section V shows the performance evaluation of time, CR, and

accuracy and Section VI concludes the paper.

II. RELATED WORK

Data compression techniques can be categorized into loss-

less compression and lossy compression in general. There are

many works [4]–[6] focusing on lossless compression of power

quality data, smart meter data, and PMU data. Our paper,

on the contrary, focuses on lossy compression, since lossy

compression has a potential to achieve a better CR compared

with lossless compression and it is acceptable as long as

parameters of compression algorithms are selected carefully

to maintain information loss within required bound.

Among all the works using lossy compression techniques

for PMU data, most of them [7]–[10] perform compression for

storage or offline bulk transmission purpose, in which cases

the delay of the compressed data is not a concern. Therefore,

they are able to use a sampling window with the length of

10 seconds or longer to gather enough data and compress

the entire data block to achieve better CRs. For sampling

window based approaches, the earliest set of measurements in

each window needs to wait for the entire window to be filled

before it can be compressed and sent. Hence, a window size

of 10 seconds means a delay of more than 10 seconds for the

earliest set of measurements in each data block, which is far

beyond the delay constraints of most of the real-time WAMS

applications [11], [12]. As a result, compression techniques

for PMU data storage or offline transmission are not directly

applicable to real-time PMU data compression purpose.

A semantics-aware real-time data transmission reduction

method is proposed in [13]. Grid applications consuming PMU

data are modelled as continuous threshold queries and relevant

data are delivered only when the threshold condition is broken.

The drawback of this approach is not all applications can be

modeled in their way and absence of detailed data during

normal status will definitely impair the system’s ability to

conduct monitoring and detailed analysis of the data.

Another real-time data compression technique is presented

in [2], combining exception compression with swing door

trending compression. Each sequence of measurements of each

Fig. 1. WAMS architecture

PMU is compressed separately by only keeping the data with

essential and effective information. The problem with this

approach is that the correlation between multiple sequences of

measurements in multiple PMUs is not utilized. And since this

technique needs to be installed on each PMU, the deployment

cost is high considering the large quantity of PMUs.

III. BACKGROUND

In this section, we first introduce the generic WAMS archi-

tecture and the phasor data concentration. Then we introduce

two compression techniques we use.

A. WAMS Architecture

A generic architecture of WAMS consists of four main com-

ponents: (1) PMU, (2) Phasor Data Concentrator (PDC), (3)

WAMS Applications, (4) underlying Communication Network

to connect the above three [14]. A simplified, multi-layered

architecture of WAMS is shown in Figure 12. In Layer 1, the

PMUs are installed in power system substations to measure

the connected bus bars or power lines. The synchrophasor

measurements from the PMUs are then transmitted via Local

Area Networks (LAN) or Wide Area Networks (WAN) to

Layer 2, where they are concentrated and sorted by the PDCs.

After that, the time-aligned measurements are forwarded via

WAN to the control center in Layer 3 and usually further

concentrated by the PDC there before finally consumed by

the WAMS applications.

Our real-time compression technique, ISAAC, resides in the

PDCs in Layer 2. We further divide the architecture into two

scenarios: (1) LAN-WAN scenario, where the Layer-2 PDC

locates in the substation and connects to the PMUs via LAN;

(2) WAN-WAN scenario, where the Layer-2 PDC collects

measurements from multiple substations and connects to the

PMUs via WAN.

B. Phasor Data Concentration

As the key component of the WAMS architecture, PDC’s

core function is to combine synchrophasor measurements from

more than one PMUs into a single time-synchronized data

stream for further processing [16]. More specifically, it collects

and sorts measurements from all connected PMUs according

to their timestamps. Measurements with the same timestamp

are encapsulated into one packet and forwarded to the control

center. Since not all measurements arrive at the same time,

2There are scenarios in which some of the components are mobile [15]. In
this work we only consider the most common static case.

Fig. 2. Example of phasor data concentration with time alignment to absolute
time [17]

PDC needs to wait and eventually timeout to mitigate the

delay. The entire process is called time alignment and can be

categorized into absolute-time-based and relative-time-based

time alignment [16]. For real-time monitoring, protection and

control applications, time alignment to absolute time reference

is preferred since it can provide better delay guarantees.

Therefore, we will only consider and introduce time alignment

to absolute time reference here.

An example of phasor data concentration with time align-

ment to absolute time is shown in Figure 2. At a certain rate

(e.g., 60Hz), measurements with timestamps are produced by

synchronized PMUs. The countdown to the timeout starts at

the time specified by each timestamp. As it is shown in the

figure, there are two potential scenarios: (1) All measurements

with timestamp T1 arrive before the timeout and the complete

data set is forwarded before the timeout; (2) Not all mea-

surement with timestamp T2 arrive before the timeout and

the incomplete data set without measurement from PMU3 is

forwarded at the end of the timeout. Note that the processing

time of PDC is omitted in this example for simplicity reason.

Phasor data concentration is only the core function of the

PDC. Since the PDC is an edge device that phasor measure-

ments reach before they are further forwarded to the control

center, more and more functions are being placed at the PDC

including data handling, processing, and storage [16]. And it is

also a perfect location to deploy our intelligent synchrophasor

data real-time compression framework.

C. Principal Component Analysis

As a commonly used linear dimensionality reduction tech-

nique, PCA [18] is a mathematical procedure that uses an

orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of linearly uncorrelated

variables called principal components (PCs).

Consider an m × n data matrix X containing n set of

samples from m PMUs3 expressed as

X =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn


 . (1)

xij represents the jth measurement from the ith PMU. The

PCA method starts by calculating the covariance matrix as

3There are usually multiple measurements from each PMU. So the actual
number of rows is larger than the number of PMUs. But we assume m rows
here for simplicity.

C = XX
T ∈ R

m×m. Since C is a square symmetric matrix,

it can be orthogonally (orthonormally) diagonalized as

C = EDE
T , (2)

where E is an m × m orthonormal matrix whose columns

are the eigenvectors of C, namely PCs, and D is an m ×m
diagonal matrix with the corresponding eigenvalues as the di-

agonal entries. The eigenvalues can also represent the variance

explained by each PC and are sorted in descending order. PCA

performs dimensionality reduction by preserving only a subset

of PCs which explain most of the variance of the original data.

Assume the first r out of the m PCs are selected. Let E(r)
represent the left most r columns of E. The transformation

matrix is selected as P = E(r)T ∈ R
r×m and the dimension

reduced matrix is expressed as Y = PX ∈ R
r×n. Let λi

represent the eigenvalue (variance), associated with the ith PC,

the total variance explained by Y is defined as

Γ(r) =

∑r

i=1
λi∑m

i=1
λi

. (3)

Usually, we want to select r s.t. Γ(r) is greater or equal to a

variance threshold γ.

Although the core idea of dimensionality reduction by

PCA is the same as above, there are various implemen-

tations of the method. In this paper, we use two imple-

mentations: The first one (we name it PCA-D) utilizes the

sklearn.decomposition.PCA [19] implementation and cannot

work with sparse matrix; the second one (we name it PCA-S)

utilizes the sklearn.decomposition.TruncatedSVD [19] imple-

mentation and can preserve the sparsity of the matrix.

D. Discrete Cosine Transform

DCT [20] transforms a sequence of data points of length

n to a domain of n cosine basis functions. The transformed

data are the coefficients of the basis functions. Some of the

coefficients have small magnitudes and thus can be discarded

without sacrificing much accuracy. We use DCT implemented

in scipy.fftpack.dct [21] to further compress each row of the

dimension reduced matrix Y in the previous section. Similar

to the previous section, let ci represent the coefficient with

the ith largest magnitude. If l out of all the n coefficients are

kept, the cumulative energy kept can be expressed as:

E(l) =

∑l

i=1
ci∑n

i=1
ci

(4)

Similar to Γ(r), E(l) is used to select proper l value. In this

work, we select the smallest l that satisfies E(l) > 0.8.

IV. METHODOLOGY

In this section, we present an overview of the design

of ISAAC. The workflow of ISAAC is described in Figure

3. There are four main components utilized in ISAAC: (1)

Buffer which buffers all the measurements have not been

sent, (2) Time Alignment Component which time-aligns the

most recent set of measurements with an absolute timeout,

(3) Disturbance Detector which decides whether there are

disturbances happening, (4) Compressor which compresses

Fig. 3. Workflow of ISAAC

the input matrix based on PCA and DCT. Among the four

components, the buffer and the time alignment component are

the built-in functions of PDCs. The disturbance detector and

the compressor, on the other hand, are the core parts of ISAAC

and are the focus of this section.

In Figure 3, ~xi is a column vector containing all the received

measurements from all PMUs corresponding to time index

i. The buffer serves as the sampling window and buffers

all the received stream measurements with time index k or

larger. ~xk represents the earliest unsent data set and ~xn

represents the earliest unprocessed data set. Periodically, the

time alignment component aligns the measurements in the

buffer based on their timestamps and forwards ~xn to the

disturbance detector4. The disturbance detector processes ~xn

and outputs the estimated status (normal or disturbance) of

the system. In normal status, ISAAC further compares the

current window size from k to n with the maximum sampling

window size K . If n− k+1 = K , all measurements buffered

from k to n, i.e. matrix [~xk, · · · , ~xn], are forwarded to the

compressor and compressed. Otherwise, ISAAC waits for

more measurements (longer sampling window) to compress.

In disturbance status, ~xn is directly sent without compression.

If there are buffered measurements besides ~xn, i.e. matrix

[~xk, · · · , ~xn−1] is not empty, then they are forwarded to the

compressor for compression. If the compressor is called, no

matter in which status, the compressed results are sent. k is

updated to n + 1 as long as something is sent, which means

the measurements in the buffer before but not including time

index n + 1 are cleared. And n is always increased by one

after each period.

There are five kinds of measurements we consider in this

work: Frequency (f), Voltage Magnitude (vm), Voltage Angle

(va), Current Magnitude (im), and Current Angle (ia). The

following two subsections describe the disturbance detector

and the compressor in more detail.

A. Disturbance Detector

The main purpose of the disturbance detector is to differenti-

ate the normal status and the disturbance status of the system.

Intuitively, a higher delay and lower accuracy are tolerable

in normal status, whereas measurements should be collected

4There could be missing data points in ~xn and in the input matrix of the
compressor. We fill in each missing data point by its current mean and record
it by a boolean. We omit this process in the workflow for simplicity.

Fig. 4. Workflow of the disturbance detector

as soon as possible during disturbances and higher fidelity

is necessary to preserve the important information in the

measurements. Since the requirements for delay and accuracy

are different in the two status, it is worth differentiating them

and handle them in different ways. Our disturbance detector

implements a modified version of a relatively simple statistical

change detection algorithm [9] for computation power and

delay consideration.

According to PRC-002-2 by NERC [22], the recommended

disturbance triggering criteria include: (1) frequency < 59.75
Hz or > 61 Hz, (2) rate of change of frequency < 0.03125
Hz/s or > 0.125 Hz/s, 3) Undervoltage trigger set no lower

than 85% of the normal operating voltage for a duration of

5 seconds. However, as it is pointed out in [9], [23], these

values are too conservative to detect all potential disturbances

and preserve all critical information. Similar to [23], we select

stricter triggering criteria as percentage deviation of θvm = 1%
for voltage and θf = 0.1% for frequency. These values could

be tuned if necessary without affecting the algorithm itself.

Since the disturbance triggering criteria are based on fre-

quency and voltage magnitude only, the disturbance detec-

tor only processes those two kinds of measurements. The

workflow is shown in Figure 4. First of all, the current

status is checked and there could be two scenarios: (1) The

system is in the normal status; (2) The system is in the

disturbance status. In the first scenario, for each i ∈ 1 . . .m,

the deviation δi(n) = |xin − µi(n)| is calculated, where

µi(n) = 1

K

∑n−1

j=n−K xij is the current mean. If all the

percentage deviations are smaller than the triggering threshold,

namely δi(n)/µi(n) < θ for all i ∈ 1 . . .m, no disturbance

is detected and the normal status remains. Otherwise, status

is changed to disturbance and the disturbance count is set

to 1. In the second scenario, we assume a disturbance will

last for at least 3 periods. So if the disturbance count is

smaller than 3, the disturbance status remains and the count

is increased by 1. Otherwise, for each i ∈ 1 . . .m, a special

standard deviation of the most recent 3 periods are calculated

as σi(n) =
√

1

3

∑n

j=n−2
(xij − µi(n))2. If all the percentage

standard deviations are smaller than the triggering threshold,

namely σi(n)/µi(n) < θ for all i ∈ 1 . . .m, the disturbance

is considered over and the status is changed back to normal.

Finally, the detector outputs the current status in all cases.

(a) Frequency (b) Voltage

Fig. 5. Example of disturbance detection

Examples of using the disturbance detector for both fre-

quency and voltage are shown in Figure 5. Blue lines represent

normal status and red lines represent disturbance status. We

can see that for both measurements, the disturbances can be

detected quickly and the normal status is retained soon after

the disturbances end. Note that the status here describes the en-

tire system, therefore it is shared among all the measurements.

So as long as one measurement (f or vm) in one of the PMUs

contains disturbances, all the five kinds of measurements from

all PMUs for this PDC are considered in disturbance status.

B. Compressor

The purpose of the compressor is to use a combination of

PCA and DCT to compress the input matrix in an intelligent

way in order to reduce the data volume to send while keeping

the sampling window small and maintaining a certain accuracy

for the reconstructed data. It mainly uses two techniques to

achieve that: the transformation matrix reuse in PCA and the

self-adapt PC number selection. The measurements of each

kind are processed separately and in parallel. Hence, there are

actually five instances of the compressor running simultane-

ously, each for one of the five kinds of measurements.

The workflow of the compressor is shown in Figure 6.

Assume the input is an m × n matrix X. The compressor

first checks whether n is equal to the maximum window size

K . If n = K , it means the system is in normal status and the

matrix is of standard size m×K . The transformation matrix

reuse module is then called. If n < K , it means the system is

in disturbance status and the self-adapt PC number selection

module is called. These two modules are explained as follows:

• Transformation Matrix Reuse: The intuition behind this

module is that temporally closed standard matrices could

share very similar PCs, namely transformation matrix P.

We use Ppre to represent the latest transformation matrix

calculated and sent to the receiving side in previous

iterations5. Whenever a new data block is ready to be

compressed, instead of recalculating and resending each

time a new transformation matrix, Ppre is tested for

reuse. To be more specific, the module compresses X

using Ppre followed by DCT. Then it reconstructs X̃

by inverse DCT and inverse PCA based on Ppre. The

reconstruction accuracy is evaluated by the maximum

relative error defined as6:

5
Ppre is only updated when a new P is calculated and actually sent.

6This is slightly different from the standard definition of maximum relative
error

∆(X, X̃) = max
i=1...m

j=1...n

|xij − x̃ij |

ξi
(5)

where ξi equals the current mean defined in IV-A for

f, vm, im and equals to 360 for va and ia. If the

maximum relative error is less or equal to the specified

tolerance represented as τ 7, Ppre can be reused and the

compressor only outputs the compressed data. Otherwise,

Ppre cannot be reused and the self-adapt PC number

selection module is called.

• Self-adapt PC Number Selection:

While using PCA to perform dimensionality reduction,

one needs to decide the number of PCs to keep, repre-

sented as r. The trade-off here is that decreasing r will

decrease the size of the compressed data but increase

the error of reconstructed data. The purpose of the self-

adapt PC number selection module is to select the proper

r to minimize the compressed data size while keeping

the reconstructed error in a certain threshold τ . Equation

3 and a variance threshold γ is used to select r. The

module works in an iterative way. The iteration starts after

matrices D and P are calculated according to equation 2

and γ is initialized as γ0. In each iteration, the smallest

r that satisfies Γ(r) ≥ γ is selected, where Γ(r) is

defined in equation 3. The transformation matrix is then

selected as P = E(r)T . The compressed matrix Z is

calculated by projecting X by P followed by DCT. If

size(P)+ size(Z) < size(X), data size is reduced after

compression and the iterations continues. Otherwise, no

size reduction is gained after compression and the original

matrix X is assigned to the result. After the size check,

X̃ is reconstructed by inverse DCT and inverse PCA. The

maximum relative error is calculated and compared with

the tolerance. If ∆(X, X̃) ≤ τ , the current r satisfies

the required reconstruction accuracy and the compressed

matrix Z and transformation matrix P are assigned to the

result. Otherwise, the variance threshold γ is increased

and a new iteration begins. Note that the P in result are

recorded by Ppre only when the compression succeeds

and X is of standard size, namely n = K .

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of

ISAAC in terms of time, CR, and accuracy. The experiments

run on a dataset consisting of field synchrophasor data col-

lected from a microgrid at Illinois Institute of Technology

(IIT) [24]. The dataset contains 18 hours of data (including

disturbances) collected from 11 PMUs running at 60 Hz from 6

PM, 1/28/2014 to noon, 1/29/2014. The dataset includes 11 se-

quences of frequency measurements, 94 sequences of voltage

synchrophasors, and 119 sequences of current synchrophasors.

The parameter values used in ISAAC are shown in Table

I. Note that τf < θf and τvm < θvm, so that reconstruction

7τ has different values for different measurement kinds and τ should always
be smaller than θ to prevent reconstruction error from triggering disturbances.

Fig. 6. Workflow of the compressor

error won’t trigger disturbances. With the maximum sampling

window size K = 108 and arrival rate of 60 samples/second,

the sampling window of 10 samples has a length of 167

ms. All the parameter values are not fixed and can be tuned

by users to satisfy their own needs. Of the two WAMS

architecture scenarios mentioned in III-A, we choose the

WAN-WAN scenario for experiments since it is likely to have

a longer communication delay and serves as a worse case

for validation. We assume all the 11 PMUs are connected to

one PDC via WAN and the PDC is connected with a control

center via WAN. According to [25], the communication delay

between a PMU and a PDC connected by WAN follows a

bimodal distribution containing two normal distributions. We

assume the communication delays between each pair of PMU

and PDC and between PDC and control center are all i.i.d.

random variables following the same bimodal distribution with

p = 0.5, µ1 = 10 ms, σ1 = 1 ms, µ2 = 16 ms, σ2 = 3 ms,

where p is the mixing factor. The absolute timeout value of

the PDC is set to 25 ms.
TABLE I

DEFAULT PARAMETER VALUES OF ISAAC

Parameter Value Parameter Value Parameter Value

K 10 τf 0.025% τim 4%

θf 0.1% τvm 0.2% τia 0.5%

θvm 1% τva 0.5% γ
0

0.5

The compression ratio is calculated by the raw data size

divided by the compressed data size. And the accuracy of

reconstructed data is measured in terms of the maximum

percentage error (MPE) and the normalized root-mean-square

error (NRMSE). Assume the original data matrix is X ∈ R
m×t

and the reconstructed matrix is X̃ ∈ R
m×t. MPE and NRMSE

can be calculated as

MPE = max
i=1...m

j=1...t

|xij − x̃ij |

µi

× 100% (6)

NRMSE =
1

m

m∑

i=1

√∑t

j=1
(xij − x̃ij)2

t

/
µi , (7)

where µi =
∑t

j=1
xij/t for f , vm, im, and µi = 360 for va

and ia.

8A larger K will result in a higher compression ratio but also a higher
delay. Here we choose K = 10 for a trade-off.

(a) Frequency

(b) Voltage

Fig. 7. Original and reconstructed data

There are two implementations of ISAAC, namely PCA-

D/DCT and PCA-S/DCT. The CR, MPE, NRMSE of each

type of measurement for the two implementations are shown

in Table II. It can be seen that good CRs can be achieved

while maintaining satisfactory reconstruction accuracy. The

only exception is the current magnitude data, where it is hard

to compress without introducing relatively large MPE. This is

due to the extremely noisy current magnitude data we observe.

In this case, it might not worth compressing current magnitude

data to avoid sacrificing data fidelity.

TABLE II
CR, MPE, AND NRMSE OF TWO IMPLEMENTATIONS

Measurement
PCA-D/DCT PCA-S/DCT

CR
MPE

NRMSE CR
MPE

NRMSE
(%) (%)

f 9.11 0.025 4.12E-5 5.21 0.025 3.01E-5

vm 20.36 0.202 3.36E-4 19.86 0.202 3.31E-4

va 20.58 0.500 1.20E-3 21.45 0.500 1.05E-3

im 2.72 6.937 5.02E-3 1.31 6.937 5.05E-3

ia 3.52 0.500 5.96E-4 1.47 0.500 6.87E-4

Figure 7 illustrates a comparison between original data

(blue lines) and reconstructed data (red lines) for two sample

frequency and voltage measurement sequences, based on the

PCA-D/DCT implementation of ISAAC. As we can see from

the figure, most noises are discarded while critical changes and

disturbances are preserved. We also evaluate the performance

of DCT alone on data compressed by PCA already. After

compressing the data by PCA-D, DCT can further reduce the

data size by 34.2% for f and 14.2% for vm.

Based on the accuracy requirements of the WAMS ap-

plications, τ can be changed to achieve different accuracy

levels. With various τf , the CR, MPE, NRMSE of frequency

measurements based on the PCA-D/DCT implementation of

ISAAC is shown in Table III9. We can see that the CR and

reconstruction error both decrease as τ decreases. Therefore,

usually the largest τ that satisfies the accuracy requirements

should be selected to maximize the CR.

To demonstrate ISAAC’s ability to satisfy the real-time

requirements of WAMS applications, we also evaluate and

9These results are based on one hour of data in the IIT dataset.

TABLE III
CR, MPE, AND NRMSE OF FREQUENCY WITH VARIOUS τf

τf CR
MPE

NRMSE
(%)

0.001 18.31 0.1 1.52E-4

0.0005 14.27 0.05 6.42E-5

0.00025 8.37 0.025 4.20E-5

0.0001 3.44 0.01 2.37E-5

0.00005 1.79 0.005 1.32E-5

processing time of different components and the end-to-end

data delay for both normal and disturbance status. The end-

to-end delay is a sum of the communication delay between

PMU and PDC, PDC processing delay, communication delay

between PDC and control center, and the data reconstruction

time. We run ISAAC on a Mac with an Intel Core i7 1.7GHz

CPU and 8GB memory. The average processing time of the

disturbance detector, compressor and data reconstruction (done

at the control center) for each period is shown in Table IV.

It can be seen that the processing time is quite negligible

and should be even shorter on real PDCs which are much

more powerful devices than our Mac. The average and the

maximum end-to-end delays of normal and disturbance status

are shown in Table V. We can see that the end-to-end delays

in disturbance status are significantly smaller than delays in

normal status, which is desirable by most of the WAMS

applications. And a maximum delay of 201 ms satisfies the

delay requirements of real-time WAMS applications [26], [27].

TABLE IV
AVG. PROCESSING TIME

(MILLISECOND)

disturbance detector 0.12

compressor 4.75

reconstruction 0.46

TABLE V
END-TO-END DATA DELAY

(MILLISECOND)

Status Avg Max

normal 107.1 201.4

disturbance 32.5 49.6

VI. CONCLUSION

In this paper, we present ISAAC, an intelligent synchropha-

sor data real-time compression framework for WAMS to be

deployed in Layer 2 PDCs. Based a combination of PCA

and DCT techniques, ISAAC is able to mitigate the burden

on communication and storage systems laid by the huge

synchrophasor data volume while satisfying the requirements

of real-time WAMS applications. A disturbance detector is

utilized to identify disturbance data and satisfy its stricter

delay and accuracy requirements. The use of two techniques

named transformation matrix reuse in PCA and self-adapt PC

number selection enables ISAAC to achieve good compression

ratios while maintaining satisfying delay and accuracy for the

reconstructed data. The performance of ISAAC is validated by

experiments based on real synchrophasor data.

REFERENCES

[1] M. Patel, S. Aivaliotis, E. Ellen et al., “Real-time application of
synchrophasors for improving reliability,” NERC Report, Oct, 2010.

[2] F. Zhang, L. Cheng, X. Li, Y. Sun, W. Gao, and W. Zhao, “Application of
a real-time data compression and adapted protocol technique for wams,”
IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 653–662, 2015.

[3] (2014, October) Synchrophasor technology fact sheet. [Online].
Available: https://www.naspi.org/File.aspx?fileID=1326

[4] R. Klump, P. Agarwal, J. E. Tate, and H. Khurana, “Lossless com-
pression of synchronized phasor measurements,” in Power and Energy
Society General Meeting, 2010 IEEE. IEEE, 2010, pp. 1–7.

[5] M. Ringwelski, C. Renner, A. Reinhardt, A. Weigel, and V. Turau, “The
hitchhiker’s guide to choosing the compression algorithm for your smart
meter data,” in Energy Conference and Exhibition (ENERGYCON), 2012
IEEE International. IEEE, 2012, pp. 935–940.

[6] J. Kraus, P. Štěpán, and L. Kukačka, “Optimal data compression tech-
niques for smart grid and power quality trend data,” in Harmonics and
Quality of Power (ICHQP), 2012 IEEE 15th International Conference

on. IEEE, 2012, pp. 707–712.
[7] J. Ning, J. Wang, W. Gao, and C. Liu, “A wavelet-based data compres-

sion technique for smart grid,” IEEE Transactions on Smart Grid, vol. 2,
no. 1, pp. 212–218, 2011.

[8] M. Wang, J. H. Chow, P. Gao, X. T. Jiang, Y. Xia, S. G. Ghiocel,
B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito et al., “A low-rank
matrix approach for the analysis of large amounts of power system
synchrophasor data,” in System Sciences (HICSS), 2015 48th Hawaii

International Conference on. IEEE, 2015, pp. 2637–2644.
[9] P. H. Gadde, M. Biswal, S. Brahma, and H. Cao, “Efficient compression

of pmu data in wams,” IEEE Transactions on Smart Grid, vol. 7, no. 5,
pp. 2406–2413, Sept 2016.

[10] J. C. S. de Souza, T. M. L. Assis, and B. C. Pal, “Data compression
in smart distribution systems via singular value decomposition,” IEEE

Transactions on Smart Grid, vol. 8, no. 1, pp. 275–284, 2017.
[11] M. Chenine, K. Zhu, and L. Nordstrom, “Survey on priorities and

communication requirements for pmu-based applications in the nordic
region,” in PowerTech, 2009 IEEE Bucharest. IEEE, 2009, pp. 1–8.

[12] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C.
Zweigle, “Smart generation and transmission with coherent, real-time
data,” Proceedings of the IEEE, vol. 99, no. 6, pp. 928–951, 2011.

[13] K. Khandeparkar, K. Ramamritham, R. Gupta, A. Kulkarni, G. Gaj-
jar, and S. Soman, “Timely query processing in smart electric grids:
Algorithms and performance,” in Proceedings of the 2015 ACM Sixth
International Conference on Future Energy Systems. ACM, 2015, pp.
161–170.

[14] C. Martinez, M. Parashar, J. Dyer, and J. Coroas, “Phasor data re-
quirements for real time wide-area monitoring, control and protection
applications,” EIPP White Paper, vol. 26, p. 8, 2005.

[15] H. Jin, S. Uludag, K.-S. Lui, and K. Nahrstedt, “Secure data collection in
constrained tree-based smart grid environments,” in Smart Grid Commu-
nications (SmartGridComm), 2014 IEEE International Conference on.
IEEE, 2014, pp. 308–313.

[16] “Ieee guide for phasor data concentrator requirements for power system
protection, control, andmonitoring,” IEEE Std C37.244-2013, pp. 1–65,
May 2013.

[17] A. Moga and T. Locher, “Scalable and reliable monitoring for power
systems,” in 2015 IEEE International Conference on Smart Grid Com-
munications (SmartGridComm), Nov 2015, pp. 259–264.

[18] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
[19] sklearn.decomposition module. [Online]. Available: http://scikit-

learn.org/stable/modules/classes.html#module-sklearn.decomposition
[20] K. R. Rao and P. Yip, Discrete cosine transform: algorithms, advantages,

applications. Academic press, 2014.
[21] scipy community. [Online]. Available: https://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.fftpack.dct.html
[22] N. A. E. R. C. (NERC), “Prc-002-2 disturbance monitoring and

reporting requirements,” April 2017.
[23] M. Biswal, S. M. Brahma, and H. Cao, “Supervisory protection and

automated event diagnosis using pmu data,” IEEE Transactions on

Power Delivery, vol. 31, no. 4, pp. 1855–1863, Aug 2016.
[24] R. W. G. C. for Electricity Innovation. Microgrid project at iit. [Online].

Available: http://iitmicrogrid.net/microgrid.aspx
[25] K. Zhu, M. Chenine, L. Nordström, S. Holmström, and G. Ericsson, “An

empirical study of synchrophasor communication delay in a utility tcp/ip
network,” International Journal of Emerging Electric Power Systems,
vol. 14, no. 4, pp. 341–350, 2013.

[26] M. Chenine, K. Zhu, and L. Nordstrom, “Survey on priorities and
communication requirements for pmu-based applications in the nordic
region,” in PowerTech, 2009 IEEE Bucharest. IEEE, 2009, pp. 1–8.

[27] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C.
Zweigle, “Smart generation and transmission with coherent, real-time
data,” Proceedings of the IEEE, vol. 99, no. 6, pp. 928–951, 2011.

