

Secure and Scalable Data Collection with Time Minimization

in the Smart Grid

Journal: IEEE Transactions on Smart Grid

Manuscript ID: TSG-00726-2014

Manuscript Type: Transactions

Date Submitted by the Author: 16-Jul-2014

Complete List of Authors: Uludag, Suleyman; U of Michigan - Flint, Computer Science, Engineering
and Physics
Lui, King-Shan; The University of Hong Kong, EEE
Ren, Wenyu; University of Illinois at Urbana-Champaign, Computer Science
Nahrstedt, Klara; University of Illinois at Urbana-Champaign, Computer
Science

Technical Topic Area :

Cyber-Physical Systems (cyber and physical security, intelligent
monitoring, outage management) < Transactions on Smart Grid, Smart
Grid Devices (smart sensors, advanced metering infrastructure, protocol <
Transactions on Smart Grid

Key Words:
data collection in the Smart Grid, Secure data collection in the Smart Grid,
scalable data collection in the Smart Grid, data collection with time
minimization in the Smart Grid

IEEE PES Transactions on Smart Grid

Secure and Scalable Data Collection with Time

Minimization in the Smart Grid

Suleyman Uludag1, King-Shan Lui2, Wenyu Ren3, and Klara Nahrstedt3

1Department of Computer Science, University of Michigan - Flint, MI, USA
2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

3Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract—Deployment of data generation devices, such as
sensors and smart meters, has been accelerating towards the
vision of Smart Grid. With insufficiencies of the legacy power
grid communications protocols, increased data generation and
communications bring about new challenges in collecting the data
securely, efficiently and in a scalable fashion. In this paper, we
present a secure and scalable data communications protocol for
Smart Grid data collection. Under a hierarchical architecture,
relay nodes (aka data collectors) collect and convey the data
securely from measurement devices to the power operator. While
the data collectors can verify the integrity, they are not given
access to the content, which may pave the way for third party
providers to deliver value-added services or even the data
collection itself. We further present optimization solutions for
minimizing the total data collection time.

I. INTRODUCTION

In the Smart Grid, massive number of sensors or measure-

ment devices will be installed to collect real-time information.

The generated data should be collected in a secure and scalable

manner. A hierarchical data collection framework is usually

adopted to make it scalable. For example, in Advanced Meter

Infrastructure (AMI), smart meters first report data to data

concentrators [1]. Thereby, the power operator does not have

to maintain a separate, expensive connection with each smart

meter. Besides, data concentrators can aggregate the smart

meter data to further reduce the message size. Apart from data

collection, this hierarchical communication structure should

also allow a delivery of a command or an instruction, issued by

the power operator to be delivered to a meter or measurement

device securely. In this paper, we develop a comprehensive

protocol that allows a power operator to collect data, as well as

send commands to measurement devices in a secure, scalable,

and efficient manner.

Fig. 1. Hierarchical Data Collection Structure.

Fig. 1 presents the data collection architecture considered

in this paper. The Measurement Devices (MDs) are sensors

or smart meters that generate power-grid specific data. They

are small telemetric devices and computationally constrained.

Each MD is connected to at least one Data Collector (DC), and

each DC may connect to multiple MDs. The Power Operator

(PO) has a direct connection with each DC. PO and DCs are

relatively more powerful than MDs. The data are reported to

PO via a set of DCs. PO may also issue commands to the

MDs via the DCs. Theoretically, a DC is trustworthy if it is

within the security domain of the PO.

However, due to the massive number of MDs and their

dispersion over a large area, it may not be appropriate to

assume DCs can be completely trusted. In addition, one of the

seven actors identified by the NIST in the SG Framework [2]

is third party service providers which are to furnish value-

added services. We assume honest-but-curious model for DCs.

Thus, the data collection tasks may be outsourced to third

party service providers [3]. Besides, the benefits of cloud

computing [4] may be accrued for storage and processing of

the data collected. Data sharing to others to provide services

like energy management services can be facilitated as well.

In some other applications [5], DCs are mobile and the

connections between DCs and MDs are dynamic. Therefore,

it would be desirable for MDs to encrypt their data in a way

that DCs do not have access to them. In other words, each

MD should encrypt its data using an appropriate key to keep

its data private to DCs and other possible adversaries. On the

other hand, due to limitation in memory and computational

capability, the encryption algorithm used should be efficient.

PO should also protect its commands appropriately. Apart from

ensuring the security of these commands, it is also crucial

to deliver these commands promptly because fast actions of

MDs are necessary to maintain the stability and health of

the smart grid. In this work, we develop a customized key

establishment scheme and data collection protocol to protect

the data and commands sent between PO and MDs via DCs

in a scalable and efficient manner. In particular, our protocol

has the following features:

1) Data reported by a certain MD can be accessed by the PO

only, even the message is transported by a DC.

2) The protocol is light-weight in the sense that MDs do not

have to perform expensive operations to report data and it does

not take a lot of memory to remember key information.

3) The protocol allows commands and urgent data to be

Page 1 of 8 IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

delivered promptly and securely.

One or more DCs can be designated to collect data from

a certain MD. However, the cost, the delay, and the security

of data collection may differ among different DCs. The PO

should select DCs according to the performance requirements.

Different optimization objectives can be developed. In this

paper, we study the time needed for the PO to collect all data

from the MDs via the DCs. We study how to assign MDs to

DCs such that the time of data collection can be minimized.

The rest of the paper is organized as follows: Sec. II

describes existing efforts on data collection in smart grids.

We provide the system and protocol overview in Sec. III. The

details of the protocol are described in Sec. IV and V. In Sec.

VI, we analyze the time performance of our mechanism and

present the DC-MD assignment problem as an optimization

problem. We conclude our paper in Section VIII.

II. RELATED WORKS

Data integrity and confidentiality are the major security con-

cerns. End-to-end data protection has been studied extensively

in the Internet. However, most schemes, such as TLS [6],

assume the devices have abundant memory and computa-

tional power to perform expensive cryptographic operations.

In smart grids, on the other hand, reporting devices have

limited memory with a slow CPU. Traditional Internet security

protocols are thus not suitable for data collection in smart

grids. DNP3 [7] is a standard communication protocol used in

SCADA (Supervisory Control And Data Acquisition). It as-

sumes all components are within the security perimeter of the

operator and is not designed to protect data forwarded by the

DC as in our situation. A more recent standard for substation

automation is the IP-based IEC 61850 [8]. Yet, IEC 61850

was also initially designed without security mechanisms [9].

It is thus generally agreed by the experts that new security

protocols for data collection and command delivery need to

be developed.

[10] and [11] study key management in smart grid. Never-

theless, these work do not consider how to hide information

from DC. The SAKE protocol [12] allows two neighboring

sensor nodes to establish keys using hash chains. However,

the authors assume the attackers are of limited computational

capability as another sensor. The authors in [13] apply the el-

liptic curve public key technique to perform key management.

Mutual authentication between different entities is studied.

Nevertheless, there is no discussion on how to protect the data

reported by a sensor.

Some protocols have been developed to establish shared

keys when the two parties can establish direct communication.

[14] describes how to establish keys and secure unicast and

multicast communications. [15] describes how to apply the

Diffie-Hellman mechanism to establish a shared key for data

authentication between two parties. [16], on the other hand,

relies on identity-based cryptography. All these mechanisms

cannot be applied in the hierarchical data collection model

because the PO and the MDs cannot establish a direct con-

nection. The authors in [17] describe how a device establishes

shared keys with different controllers at different hierarchical

levels. However, it is assumed that a shared key exists between

two adjacent controllers.

Some efforts have been put in studying the transport proto-

col for data collection among a massive number of MDs. [18]

studies how to reduce the storage needed when the control

center needs to establish multiple sessions with the MDs.

Long-term shared keys are generated by a function so that

the control center only needs to memorize the function but

not individual keys. Nevertheless, the key developed this way

is not very secure. Besides, the protocol is not suitable for

the hierarchical data collection architecture. Data collection

through a data collector is considered in [19]. The authors

propose to maintain two separate TCP connections, and the

two connections can be protected using different mechanisms

independently. Nevertheless, the data collector is assumed to

be trustworthy that it can read the data sent by the MD.

[20] studies how data generators report data to a honest-but-

curious storage center for a user to retrieve later. To the best of

our knowledge, the data collection trust model assumed in this

paper is the most related to our scenario. The storage center

is similar to the DC in our model that it is semi-trusted, and

data should be hidden from it. MDs in our model are the data

generators, while PO is a user in their model. However, the

paper suggests to use expensive identity-based and public key

encryption to protect data to incorporate policy consideration.

The experimental computational time for a decryption on

a message of size less than 1000 bits in a low-end smart

meter (TinyPBC library on a 32-bit ARM XScale PXA271

processor) is around 140ms, while the encryption is supposed

to be a few times more expensive. Our protocol, on the

other hand, encrypts data using the much more light-weighted

symmetric key cryptography. We also perform experiments to

study the time performance of our mechanism.

None of the papers mentioned above studies how to assign

MDs to DCs. We formulate this assignment problem and

develop a fast heuristic algorithm.

III. SYSTEM AND PROTOCOL OVERVIEW

A. Operations and their requirements

As mentioned in Section I, our communication architecture

supports MDs to report data and PO to deliver commands in

a timely and secure manner. Table I describes each operation.

Op 1 is a regular call-for-data from the PO which is performed

periodically. Op 2 is performed when PO detects something

abnormal and would like a data report from a particular MD.

Time is more critical than a regular data reporting. Op 3 is

done when MD detects something abnormal and would like

to report to the PO. OP 4 is issued when PO needs a group

of MDs to perform a certain action as soon as possible.

We develop our protocol to be secure from outsider attacks

such as eavesdropping, impersonation, and message tamper-

ing, etc. There are three types of insiders in the protocol:

PO, DCs, and MDs. We assume the PO is always trustworthy

because it is the control of the whole system. The DCs, on

the other hand, are honest-but-curious that they would follow

Page 2 of 8IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Operation Security Requirement Time Requirement

Op 1
PO initiates data collection of all MDs
or a group of MDs

Data reported should be authenticated and
should be read only by the PO, not by other
MDs or any DC

The total time to collect all data should be
minimized

Op 2 PO requests data from a certain MD Same as Op 1 The time needed should be kept minimal

Op 3 MD initiates an urgent data report Same as Op 1
The data should be delivered to the PO as
soon as possible

Op 4
PO issues an urgent command to a
group of MDs

The command should be authenticated ap-
propriately

Time for each MD to receive and read the
command should be minimized

TABLE I
SYSTEM OPERATIONS AND THEIR REQUIREMENTS

the protocol as specified but would like to read the data

and share with others if they could. That is, they would not

impersonate another entity in the system, nor actively tamper

the data, but would like to learn as much as possible based

on the information they can access according to the normal

operation of the protocol. As the MDs are devices located

in the field (for example, on power grid poles), they are not

likely to be in a very secure physical environment. We thus

assume the MDs may be compromised after installation. In

other words, an attacker takes over the MD and is able to

read the key information kept in the device. In this situation,

the attacker can report fake data to the PO on behalf of the

MD. Our protocol cannot identify whether the data reported

using a legitimate key is generated by an attacker, but our

protocol ensures this compromised MD cannot impersonate

others based on the key information it has. To detect whether

a certain MD is compromised, intrusion detection techniques

can be used, which is beyond the scope of this paper.

B. System Parameters

Before any communication, PO, DCs, and MDs are

equipped with a set of system parameters. We assume nec-

essary parameters are configured in a DC or MD before they

are installed in the field.

1) Long-term keys: We assume there is a key server that can

generate a set of public and private keys for each entity in the

system. The public/private key pair is configured into a DC or

MD before it is installed in the field. PO, on the other hand,

apart from keeping its own key pair, it also remembers the

public keys of all MDs and DCs in the system. We denote the

public key and private key of A as A+ and A−, respectively.

Under normal circumstances, PO would not publish the public

keys of DCs and MDs to the general public. However, our

protocol is secure even if the attackers know the public key

information of any DC or MD they want to attack.

2) Diffie-Hellman (DH) parameters: We adopt the Diffie-

Hellman key exchange mechanism to develop shared keys

between two parties. Due to space limitation, we refer readers

to [21] for the details. Generally speaking, DH allows the two

parties to develop a secret shared key even eavesdroppers can

read the half keys they exchange with each other. Through

forgetting half keys and shared keys appropriately, DH keys

also support perfect forward secrecy.

C. Cryptographic functions

To provide authentication, confidentiality, integrity, and

other security protections, messages have to be encrypted,

hashed, or signed. We assume the PO selects appropriate

cryptographic algorithms for the purposes, and these functions

are installed in the DCs and MDs. For example, PO may use

AES for symmetric key encryption and SHA-256 for hash

computation. Table II summarizes the functions used in the

protocol. In the table Kp is a public key while Ks is a shared

key.

Name Description Name Description

PKE(Kp,M) encrypt M using Kp PKD(Kp,C) decrypt C using Kp
SKE(Ks,M) encrypt M using Ks SKD(Ks,C) decrypt C using Ks
SIGN(A,M) sign of M by A SIGV (A,M) verify M signed by A

TABLE II
SYSTEM FUNCTIONS

Some cryptographic functions run much slower than others.

As some smart grid operations are time sensitive, it is very

crucial to identify efficient cryptographic functions appropri-

ately to protect the communication. To further understand

the computational time of the cryptographic functions on

computationally constrained devices, we measure the time

needed to execute some representative cryptographic functions

on Raspberry Pi. Raspberry Pi is a tiny computer with a size

similar to a credit card. The CPU is 700MHz and the memory

available is 512MB. Due to space limitation, we only present

some of the results. More details can be found in [22].

RSA 1024 bits 3072 bits

Message
Size (bits)

Sign.
(ms)

Ver.
(ms)

sign/ver
ratio

Sign.
(ms)

Ver.
(ms)

sign/ver
ratio

128 64.01 3.91 15.12 1048.37 11.49 91.23

256 64.97 4.01 16.19 1033.46 11.65 88.68

512 64.27 4.00 16.08 1047.96 11.69 89.67

TABLE III
RSA COMPUTATIONAL TIME

Table III presents the time needed to create an RSA sig-

nature and verify an RSA signature using different key sizes.

The time spent on encrypting a message using public key is

similar to the time needed in verifying a signature. The time

needed on decrypting a message using private key is similar

to the time needed on signature creation. It can be observed

that the time needed does not grow with message size but

with key size. Column ratio in the table gives the time ratio

Page 3 of 8 IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

of
signature computation
signature verification

. The time spent on a private key

operation (signing a message) is much longer than that on

a public key operation (verifying a signature). An efficient

protocol should not require MDs to sign a lot of messages,

especially when a long RSA key is used.

We also measured the time needed to generate different

Diffie-Hellman keys with different key sizes [22]. A DH

shared key generation is more expensive than an RSA sig-

nature verification. It implies that it may not be appropriate to

re-generate DH shared key for each data collection instance.

By adopting different cryptographic functions and techniques

carefully based on their security features and computational

complexities, our protocol facilitates efficient and secure data

collection.

D. Protocol Overview

Because encrypting data using public key cryptography is

very expensive, before any data collection, we should first

develop shared keys among PO, DCs, and MDs for data

protection. To ensure data reported by a certain MD can be

decrypted by the PO only, we need to establish a key that

is known by PO and that MD. We call a key that is known

by exactly two parties a pairwise shared key. PO and each

DC should also develop a pairwise shared key to protect

their conversations. The same applies to DC with each MD

it will talk to. Apart from pairwise keys, to facilitate a certain

command or instruction to be delivered to a group of MDs in

a secure and efficient manner, we also develop a set of group

keys that each group key is shared between the PO, a DC, and

the MDs that connect to that DC. The group keys will also be

used to update the pairwise shared keys efficiently. We will

describe the details in Section IV-B.

The PO initiates the Shared Key Generation Process to

establish the necessary pairwise shared keys and group keys.

We adopt the Diffie-Hellman key exchange mechanism to

develop all pairwise shared keys. We authenticate the DH half

keys using the long-term public keys to avoid the man-in-

the-middle attack. Once the pairwise shared keys and group

keys are established, they will be used for data collection and

command delivery.

As DH operations are expensive, we should not re-generate

the DH shared keys for every data collection. However, it

may not be very secure if we use the same shared keys to

encrypt data collected at different times. To strike a balance

of computational complexity and security, the data encryption

key for each data collection instance depends on both the

DH shared key and the timestamp. As the timestamp changes

for every data collection instance, the data encryption key

will be changed even though we do not re-generate the DH

shared key. In the following, we will first describe the Shared

Key Generation process in Section IV. The detailed message

exchanges of the four operations mentioned in Section III-A

will be provided in Section V.

IV. SHARED KEY GENERATION

Let the set of MDs beMD and the set of DCs be DC. Before

the PO initiates the process, PO has to assign a set of MDs

for DC to connect to. We let MDLISTi ⊆ MD be the set of

MDs that are assigned to DCi. Definitely, ∪DCi∈DCMDLISTi =
MD. However, MDLISTi ∩MDLISTj, where i �= j, may not

necessarily be /0. It is possible that PO would like multiple

DCs to collect data from the same MD to enhance reliability.

In fact, different assignments between MDs and DCs would

differ in data security, cost, and data collection time. In Section

VI, we will formulate the assignment problem to minimize the

data collection time.

In the rest of this paper, for the ease of discussion, we use

shared key to refer to pairwise shared key. We further denote

KAB as the shared key between A and B. We refer to the set

{PO,DCi}∪MDLISTi as group Gi, and the group key of Gi is
GKi. We use M1||M2 to represent concatenating messages M1
and M2. The definitions of the functions used can be found

in Table II.

A. Initial Shared Key Generation

Figure 2 presents a summary of the initial shared key

generation process. When the procedure starts, the only keys

an MD or a DC knows are its own public/private keys and

the public key of the PO. After the procedure, MD j should

have established KPOMD j , D
DCi
MD j
, and GKi if MD j ∈ MDLISTi.

Through the procedure, DCi knows GKi, K
PO
DCi
and K

DCi
MD j

for

all MD j ∈MDLISTi. The detailed procedure is as follows:

������ ���	�
 �� � �� �	
����� � �� ���

�� ��� ��

������� �� ��
�� �	
���� ������
���

������� ������
�������� �
���
� ������������

� ��������
�
���� ���������� �� �� ��
�����

�	
����� � �� ���� �	
����� ����
���

������� ��� �	
���� ������
���

����� ����
�� �	
���� ������
���

Fig. 2. Initial Shared Key Generation.

1) PO starts the key generation process. It first generates a

DH secret a to talk to the DCs. It is possible for PO to use

different a’s for different DCs. If so, PO has to remember the a

used for each DC. Apart from a, PO also captures the current

timestamp T1 and sends the following message to DCi.

PO→ DCi: PKE(DC
+
i ,g

a||T1),SIGN(PO,ga||T1)

This message is secure from message tampering and imper-

sonating because an attacker cannot sign ga||T1 correctly.
2) When DCi receives the message, it retrieves g

a and T1

using DC−
i and PO

+. It verifies whether T1 is reasonable. If

so, it generates its DH secret b and computes K as gabmod p.

K is then the shared key between PO and DCi (K
PO
DCi
). It also

replies PO its public DH key.

DCi → PO: PKE(PO+
,gb||T1),SKE(K,T1)

Page 4 of 8IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

An attacker, who does not know DC−
i , cannot develop K and

produce a correct message.

3) When PO receives the message, it can retrieve gb using

PO− to compute K. It also verifies SKE(K,T1) to ensure it
was DCi who sent the message. It then sends DCi the list of

MDs, together with the MDs’ public keys, that it assigns DCi
to talk to. It also creates C for DCi to talk to the MDs in the

list. C contains gc, which is used for establishing shared keys

between PO and MDs, and GKi, which is the group key of Gi.

The public keys of the MDs should also be sent (We assume

they are included in MDLISTi in Figure 2). It is worth noting

that PO also sends SIGN(PO,C||DC+
i) to DCi. This signature

is to avoid messages from being tampered.

PO→ DCi: SKE(K,MDLISTi||C||SIGN(PO,C||DC
+
i)) where

C = gc||GKi
4) After verifying SIGN(PO,C||DC+

i) to ensure the message
has not been tampered, DCi can then generate its DH half

key, gei for establishing shared keys with the MDs. DCi also

captures the current timestamp T2 and sends the informa-

tion to MD j in MDLISTi using the public keys provided.

DCi also needs to send its public key. To protect DC
+
i

and C||gei ||T2 from being tampered, SIGN(PO,C||DC+) and
SIGN(DCi,g

ei ||T2) are sent as well.

DCi →MD j: DC
+
i , PKE(MD

+
j ,C||g

ei ||T2),
SIGN(PO,C||DC+), SIGN(DCi,g

ei ||T2)

5) Upon receiving the message, MD j retrieves C||g
ei ||T2

and verifies the signatures. It then generates a DH secret key

d to establish the shared key between itself and PO (KPOMD j),

which is gcd , and the shared key with DCi(K
DCi
MD j
), which is

geid . It sends the information of gd to DCi. As DCi sends the

same gei and T2 to all other MDs in MDLISTi, MD j has to

sign gd to authenticate the reply.

MD j → DCi: PKE(DC
+
i ,g

d), SIGN(MD j,g
d ||T2)

6) When DCi receives the message, it retrieves g
d and

verifies the signature. If so, it sends PO the key information.

DCi → PO: SKE(K,gd ||T2), SIGN(MD j,g
d ||T2)

7) If gd ||T2 encrypted using K and signed by MD j are
the same, the message has not been tampered. PO can then

compute the KPOMD j to be g
cd . Note that as DCi can only read

gc and gd but neither c nor d, it cannot compute gcd . gcd is

thus a key shared by PO and MD j only.

We now analyze the memory needed for each entity to keep

the shared keys. The PO needs to keep a shared key for each

DC, a shared key for each MD, and a group key for each

group. The total number of keys is 2x|DC| + |MD|. DCi has
to keep KPODCi , a shared key with each MD belongs to its group,

and a group key. The total is 2 + |MDLISTi|. For MD j, for
each group Gi it belongs to, it has to keep a shared key with

DCi and the group key GKi. It is worth noting that MD j can

establish different shared keys with PO through different DCs.

If PO provides different gc’s for different DCs, the shared keys

developed via different DCs must be different. Even when PO

provides the same gc through different DCs, MD j can also

establish different shared keys by replying different gd’s for

different DCs. Therefore, MD j has to keep at most 3 x number

of groups it belongs to keys in total. PO decides how many

groups an MD is associated with and can thus establish keys

according to the memory available in different MDs.

B. Shared Key Update

The shared keys generated are expected to be used in the

subsequent data collections and command deliveries. As this

shared key generation process would not be launched for every

single data collection, time and computational complexities

are thus not a very major concern, especially for the first time

the shared keys are generated. On the other hand, a secure

system should periodically change the shared keys. If the keys

have to be frequently changed, the procedure in Fig. 2 might

be too expensive as an MD has to handle several expensive

public key and DH operations. To reduce the complexity, if the

current shared keys are still secure (remain secret to attackers),

we can replace the public key encryptions and signatures by

symmetric key encryptions as shown in Fig. 3.

�� ��� ��

��	
�� �
 �� ��� ����
�� �
��������

��	
�� ������������	
�
� ���

��	
�
� ������ �� � �� ��	
�� ���

� �������������
��	
����������� ������

����
�� � �� ����������

��	
��� � ����	
��� � ������

����
�� ����	
����� ���������

��	
�
� � ����	
�� � ���

Fig. 3. Shared Key Update.

In the figure, HASH(K,M) means producing a keyed-hash
on message M using key K. It is worth noting that in the key

update procedure, it is possible for a malicious DC to trick

an MD to accept a fake C created by the DC. This should

not happen if all DCs are honest-but-curious. In case it is

necessary to protect a previously honest but now malicious

DC to issue the attack, the PO can sign C. That is, instead

of sending SKE(GK,C), PO should send SIGN(PO,C) to the
MDs via the DC. PO can start collect data after the shared keys

are established. We will describe the details of each operation

in the next section.

V. DATA COLLECTION AND COMMAND DELIVERY

A. PO initiates Data Collection of a Group of or All MDs

It is a regular data collection initiated by the PO. To ensure

the data reported can be read by the PO only, MD j should

encrypt the data using KPOMD j . The protocol should not request

MDs to perform a lot of expensive operations as well. To

reduce the total time needed, we should reduce the number of

messages PO or DC has to create. In the following, we first

present the data collection procedure in a step by step manner.

Fig. 4 shows the whole process. In the figure, K1, K2, and K3

are KPODCi , K
PO
MD j
, and K

DCi
MD j
, respectively.

1) PO first identifies all the DCs to talk to according to a

certain optimization criterion. It captures the current timestamp

Page 5 of 8 IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

�� ��� ��

�� ��	
��
�
 �� 	������
��

�� ��	
���
�
 �� 	�������
��

�� ���� ��
�� ��	�����
���
��
�� �����
��

�� ��	
�����
���
�
� �����
��

Fig. 4. Data Collection.

T and sends a message to DCi. Note that it is possible that PO

does not want to collect data from some MDs in MDLISTi. If

so, PO should also include the list of intended MDs. We omit

that in our protocol to simplify the discussion.

PO→ DCi: SKE(K
PO
DCi

,T ||SIGN(PO,T))

2) DCi verifies the signature and checks whether T is reason-

able. It then sends T to MD j ∈MDLISTi (or only the MDs PO
wants to collect data from).

DCi →MD j: SKE(GKi,T ||SIGN(PO,T))

By encrypting the message using the group key GKi, DCi only

needs to create a single message for all MDs in its group.

However, the group key cannot authenticate it was PO who

requested the data collection because it is a key shared by many

entities. We thus need to include a signature of PO to facilitate

authentication. This message should work fine if DCi has to

collect data from every MD in MDLISTi. However, when some

MDs are not supposed to report data, those are not reporting

can also read T in the message. If this is a serious concern, DCi
can send SKE(KDCiMD j

,T ||SIGN(PO,T)) to the involved MDs
instead. The disadvantage of this approach is DCi needs to

create a different message for different MD and possibly incurs

more delay in the data collection process.

3) After verifying T , MD j generates a key MK =
GENKEY (KPOMD j ,T). An encryption key and an integrity key
developed based on MK are used to protect the data. The

protected data is denoted as PRODATA. As MK depends on

T , different MK’s will be used for different data collection

instances even KPOMD j is not changed. MD j also generates

DK = GENKEY (KDCiMD j
,T). The hash of PRODATA using DK

is computed and sent to DCi.

MD j → DCi: PRODATA,HASH(DK,PRODATA)

4) DCi verifies the hash to ensure PRODATA was generated

by MD j even it cannot decrypt PRODATA. It then forwards

PRODATA to PO.

DCi → PO: SKE(GENKEY (KPODCi ,T),PRODATA)

Alternatively, DCi can encrypt all the replies from MDs in

a single message. In this case, only a single symmetric key

encryption is needed, but PO may receive some data later.

5) Finally, PO develops MK on its own to extract the data

from PRODATA.

It can be observed that each MD, each DC, and the PO need

to perform one public key operation only no matter how many

messages it has to handle. Besides, the signature verification

that MDs and DCs have to perform is not very expensive when

compared with signature creation. Our protocol is thus very

light-weight and scalable.

B. PO requests data from MD j

1) PO first identifies a certain DCi such that MD j ∈ Gi. T
is the timestamp. Apart from signing the timestamp, PO also

encrypts the timestamp using KPOMD j .

PO→ DCi: SKE(K
PO
DCi

,T ||SIGN(PO,T)||SKE(KPOMD j ,T))

2) DCi sends the information to MD j after verifying the

signature on T .

DCi →MD j: SKE(K
DCi
MD j

,T ||SKE(KPOMD j ,T))

Steps 3 - 5 are the same as in Section V-A.

Similar mechanism can be used for PO to issue an urgent

command to MD j. MD j should respond with an acknowledge-

ment instead of PRODATA.

C. MD j initiates an urgent data report

1) MD j first identifies a certain DCi to relay the message

and records the current timestamp T . PRODATA and DK

are generated as in Step 3 in Section V-A.

MD j → DCi:

SKE(KDCiMD j
,T ||PRODATA||HASH(DK,PRODATA))

2) DCi verifies the hash and forwards PRODATA to PO.

DCi → PO: SKE(KPODCi ,T ||PRODATA)

3) PO can then extract T using KPODCi to develop the appro-

priate keys to decrypt PRODATA.

In reporting emergency information, latency and reliability

are very important. In the protocol, MD j does not need to

perform any expensive public key operation before sending

the data report. The latency is thus very small. To en-

hance reliability, MD j can send the data to PO via multiple

DCs. It has to compute HASH(DK,PRODATA) and encrypt
T ||PRODATA||HASH(DK,PRODATA) using different keys
for different DCs in Step 1. As both operations are not

expensive, MD j can send out the reports promptly.

D. PO issues an urgent command to a group of MDs

1) Similar to requesting data, PO should first identify the

DCs that cover all the MDs that it wants to send the urgent

command to. Let the command be COMD. MDLISTi contains

the MDs that DCi should talk to.

PO→ DCi:

SKE(KPODCi ,SIGN(PO,COMD)||MDLISTi||COMD)

2) DCi sends to each MD j in MDLISTi the urgent command.

DCi →MD j: SKE(GKi,SIGN(PO,COMD)||COMD)

The signature of the command by the PO provides authen-

tication check to all MDs and DCs. By using a group key in

Step 2, we share the same issue as in Step 2 of Section V-A.

The administrator can thus select the most appropriate way to

strike a balance of security and efficiency.

Page 6 of 8IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

VI. GROUPING OPTIMIZATION

We now consider how to minimize the time to perform

data collection from a group of MDs by selecting a single

appropriate DC to collect data from each MD. To compute

the total time needed for PO to collect the data, we first

define some notations to represent the time needed to perform

a single cryptographic operation defined in Table II. Theoreti-

cally speaking, the time needed for a cryptographic operation

depends on the size of the message. As we only perform public

key operations on small-sized messages, we ignore this factor

and denote T p(OP,A) as the time needed for A to execute
public key cryptographic operation PKE, PKD, SIGN, and

SIGV . For example, the time for PO to sign a message is

T p(SIGN,PO). To capture the effect of message size on the
computational time of symmetric key and hash operations, we

denote the time needed as T s(OP,A,SIZE). As symmetric key
encryption and decryption take roughly the same time, we use

SK to represent both SKE and SKD. We also use HASH to

denote both hash computation and verification. To simplify our

discussion, we assume the size of T ||SIGN(PO,T) in Section
V-A as 1 unit. That is, the time needed for DCi to develop

message SKE(GKi,T ||SIGN(PO,T)) is T
s(SK,DCi,1). The

one-way network delay between A and B is T n(A,B). We also
let xi j = 1 if MD j belongs to Gi.

To simplify our discussion, we use M1, M2, M3, and M4

to represent the four messages exchanged between PO, DCs,

and MDs as shown in Fig. 4. We only consider the situation

where a DC reports all data collected in a single message to

PO. To illustrate the process of time analysis, we present Fig.

5 to explain the different time components in the whole data

collection process. In the picture, we assume there are only

two MDs.

We first develop the time needed for DCi, after having pre-

pared M2, to send message M2= SKE(GKi,T ||SIGN(PO,T))
to MD j and verify the hash of MD j’s reply, which is denoted

as Ti j. Ti j is the sum of the following components:
�� ��

�
��� ���

��

	
��

	
��	

���
	
���

Fig. 5. Time for Data Collection

1) round-trip network delay between DCi and MD j:

2T n(DCi,MD j)
2) time needed for MD j to generate reply M3 (Step 3):

T s(SK,MD j,1)+T
p(SIGV,MD j)+T

s(SK,MD j,size)+
2T s(HASH,MD j,size) where size is the size of the data
in terms of number of units.

3) time needed for DCi to verify the hash:

T s(HASH,DCi,size)

Before DCi can send message M2 =
SKE(GKi,T ||SIGN(PO,T)) to MD j, DCi needs to decrypt
M1 and prepare M2. As described in Step 2 in Section V-A,

DCi has to spend 2T
s(SK,DCi,1) + T

p(SIGV,DCi) time to
prepare M2. We now study the time needed for DCi to prepare

the reply (M4) to PO after verifying the hashes of the replies

from all MDs. Let Ni be ∑ j xi j. That is, Ni is the number

of MDs in Gi. The total amount of data received by DCi is

Ni× size. The time to prepare M4 is T
s(SK,DCi,Ni× size).

Therefore, the total time needed for DCi from the moment it

receives M1 from PO to the moment it sends out M4 to the

PO is:

T cDCi = 2T s(SK,DCi,1)+T
p(SIGV,DCi)+max j{xi jTi j}

+T s(SK,DCi,Ni× size)

We now study the time from the moment that PO sends

out M1 until the moment that PO successfully decrypts and

verifies the data carried in M4 sent by DCi. We denote

this time as TDCi . To retrieve the raw data from M4 =
SKE(GENKEY (KPODCi ,T),PRODATA), PO first needs to de-

crypt M4 using GENKEY (KPODCi ,T). It then needs to decrypt
and verify the hash carried in PRODATA. Therefore, TDCi is

TDCi = 2T n(PO,DCi)+T
c
DCi

+

2T s(SK,PO,Ni× size)+T
s(HASH,PO,Ni× size)

= f (i)+max j{xi jTi j} (1)

where

f (i) = 2T s(SK,DCi,1)+T
p(SIGV,DCi)+2T

n(PO,DCi)

+2T s(SK,PO,Ni× size)+T
s(HASH,PO,Ni× size)

When PO wants to collect all data as soon as possible, we

should assign each MD to an appropriate DC such that the

maximum TDCi over all i ∈D is minimized. Such an objective

leads to what is known in the literature as a minimax problem

using Integer Linear Programming (ILP). As solving ILP is

NP-hard by reduction from a 3-Partition problem, we develop

a greedy heuristic, Least Loaded DC First (L3F), to solve the

problem. We find the largest time for data collection for any

(DC,MD) pair, say δ ,µ . We assign MD µ to a DC that will

complete in the least time. Next, we pick the next largest time

and assign it to the least loaded DC for the corresponding

MD. We iterate until we deplete unassigned MDs. It is obvious

that the complexity of the algorithm is O(d). Due to the page
limitation, we omit the details of the full algorithm and refer

the reader to [22].

VII. PERFORMANCE EVALUATION

We have used CPLEX to solve the ILP formulations and

implemented our approaches in C++. Since the problem is

NP-Hard, the ILP formulation that can be solved by CPLEX

hits a wall rather quickly: After about 70 MDs and 35 DCs,

CPLEX started taking very long to yield any results. Thus, we

have run some simulations up to 70 MDs and 35 DCs each

Page 7 of 8 IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

Distance from Optimal for MD = 25 − 70, DC = 10 − 20

Different Number of (MD,DC) Pairs

(2
5,

10
)

(2
5,

20
)

(2
5,

30
)

(4
0,

10
)

(4
0,

20
)

(4
0,

30
)

(5
5,

10
)

(5
5,

20
)

(5
5,

30
)

(7
0,

10
)

(7
0,

20
)

(7
0,

30
)

R
a

ti
o

 t
o

 I
L

P
 O

p
ti
m

a
l
S

o
lu

ti
o

n

L
3
F

ILP (Optimal)

50 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

Number of MDs

T
o

ta
l
T

im
e

Total Time for Greedy Longest to Least Loaded First

DC=25

DC=50

DC=75

DC=100

(a) (b)
Fig. 6. (a) Ratio of total data collection time for L3F to Optimal ILP, (b)
Performance of L3F in terms of total data collection time over changing the
number of MDs with 4 different number of DCs.

with 30 runs to get an idea of the comparative performance

results. The time for collecting data from MDs by DCs are

randomly generated from a uniform probability distribution in

the range of 10 to 100. The number of DCs took the values

of 10, 20, and 30 while the number of MDs were assigned

25, 40, 55, and 70. All possible combinations were run for 30

times for statistical significance.

Figure 6a shows the performance of ILP and L3F for all 12

combinations of the number of MDs and DCs. It plots the total

time values returned by the ILP from CPLEX as the reference

point and hence shows it as a straight line on bottom. L3F,

being a greedy algorithm, performed worse with an average

distance ratio to the optimum of approximately 1.96.

For more MDs and DCs, ILP cannot yield results. Thus,

we only report L3F in extensive simulations with the number

of MDs going up to 1000 in increments of 50 starting from

50 and number of DCs at 25, 50, 75, 100. We had a total of

80 unique (MD,DC) pairs. Again, in order to attain statistical
significance, each combination pair was run 30 times. The

time values for the data collection from MDs by DCs were

generated using a uniform density function in the range of 10

to 100. Figure 6b displays the total time of data collection

for L3F over the number of MDs from 50 to 1000 for 25,

50, 75, and 100 DCs as separate lines. Except for when the

number of DCs was equal to 25, the total time increases with

respect to larger number of MDs is with moderate slope. When

DC is equal to 25, the increase is rather steep but still linear.

This behavior might indicate that when there is significant

imbalance between the number of DCs and MDs the total time

to collect data may adversely affected. This point of operating

overload is hard to have a threshold value to associate with

but nevertheless should be considered.

VIII. CONCLUSION

The bidirectional power and information flow of the Smart

Grid vision has led to the proliferation of a variety of measure-

ment devices. These devices generate unprecedented amounts

of data. The existing, legacy protocols are not capable of

addressing this new phenomenon. In order to address this

challenge, we propose a comprehensive and secure com-

munications protocol to enable a power operator to collect

data from measurement devices in a practical, scalable, and

efficient manner under a hierarchical data collection model.

Intermediary nodes are assumed to follow the honest-but-

curious model in relaying the data. Thus, our protocol paves

the way for third party service provisioning, as envisioned by

the NIST Smart Grid Framework. Examples of such services

include outsourcing data collection by third party DCs, utiliz-

ing cloud computing services for data storage and processing,

etc. We formulate an optimization problem for associating the

intermediary relay nodes with measurement devices for data

collection in order to minimize the total data collection time.

The problem is intractable and thus we present a heuristic

algorithm with good approximation and fast convergence.

REFERENCES

[1] N. Kayastha, D. Niyato, E. Hossain, and Z. Han, “Smart grid sensor
data collection, communication, and networking: a tutorial,” Wireless
Communications and Mobile Computing, pp. n/a–n/a, 2012.

[2] National Institute of Standards and Technology. (2013, October) NIST
Framework and Roadmap for Smart Grid Interoperability Standards,
Release 3.0. Smart Grid Interoperability Panel (SGIP).

[3] X. Fang, S. Misra, G. Xue, and D. Yang, “Managing smart grid infor-
mation in the cloud: opportunities, model, and applications,” Network,
IEEE, vol. 26, no. 4, pp. 32–38, July 2012.

[4] S. Bera, S. Misra, and J. Rodrigues, “Cloud computing applications for
smart grid: A survey,” IEEE Tran. on Par. and Dist. Sys., no. 99, 2014.

[5] R. Tabassum, K. Nahrstedt, E. Rogers, and K.-S. Lui, “SCAPACH: Scal-
able password-changing protocol for smart grid device authentication,”
in Proc. of Third International Workshop on Privacy, Security, and Trust
in Mobile and Wireless Systems (MobiPST), 2013.

[6] RFC 5246, “The transport layer security (tls) protocol version 1.2,” 2008.
[7] IEEE 1815-2012, “Dnp3 secure authentication version 5,” 2011.
[8] International Electrotechnical Commission’s (IEC) Technical Committee
57 (TC57). IEC 61850, Power Utility Automation .

[9] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and
challenges,” Computer Networks, vol. 57, no. 5, pp. 1344 – 1371, 2013.

[10] X. Long, D. Tipper, and Y. Qian, “An advanced key management
scheme for secure smart grid communications,” in Proc. of IEEE
SmartGridComm, 2013.

[11] N. Liu, J. Chen, L. Zhu, J. Zhang, and Y. He, “A key management
scheme for secure communications of advanced metering infrastructure
in smart grid,” IEEE Tran. on Ind. Elect., vol. 60, no. 10, 2013.

[12] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” in Proc. of International Conference
on Distributed Computing in Sensor Systems, 2008.

[13] D. Wu and C. Zhou, “Fault-tolerant and scalable key management for
smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 2, June 2011.

[14] Y. Law, G. Kounga, and A. Lo, “WAKE: Key management scheme for
wide-area measurement systems in smart grid,” IEEE Comm. Mag., Jan.
2013.

[15] M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, and X. Shen, “A
lightweight message authentication scheme for smart grid communica-
tions,” IEEE Transactions on Smart Grid, vol. 2, no. 4, Dec. 2011.

[16] C. Bekara, T. Luckenbach, and K. Bekara, “A privacy preserving and
secure authentication protocol for the advanced metering infrastructure
with non-repudiation service,” in Proc. of ENERGY, 2012.

[17] H. Nicanfar and V. Leung, “Multilayer consensus ecc-based password
authenticated key-exchange (mcepak) protocol for smart grid system,”
IEEE Transactions on Smart Grid, vol. 4, no. 1, 2013.

[18] Y.-J. Kim, V. Kolesnikov, H. Kim, and M. Thottan, “SSTP: a scalable
and secure transport protocol for smart grid data collection,” in Proc. of
IEEE SmartGridComm, 2011.

[19] T. Khalifa, K. Naik, M. Alsabaan, A. Nayak, and N. Goel, “Transport
protocol for smart grid infrastructure,” in Proc. of IEEE International
Conference on Ubiquitous and Future Networks, 2010.

[20] J. Hur, “Attribute-based secure data sharing with hidden policies in smart
grid,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 11, 2013.

[21] G. Dan, K.-S. Lui, R. Tabassum, Q. Zhu, and K. Nahrstedt, “SELINDA:
A secure, scalable and light-weight data collection protocol for smart
grids,” in Proc. of IEEE SmartGridComm, 2013.

[22] S. Uludag, K.-S. Lui, W. Ren, and K. Nahrstedt, “Secure and Scalable
Communications Protocol for Data Collection with Time Minimization
in the Smart Grid,” University of Illinois at Urbana-Champaign, Tech.
Rep., July 2014. [Online]. Available: http://hdl.handle.net/2142/49985

Page 8 of 8IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

