Operation-Level Traffic Analyzer Framework for Smart Grid

Wenyu Ren
Department of Computer
Science, University of lllinois
Urbana-Champaign
201 North Goodwin Avenue
Urbana, lllinois 61801-2302
wren3@illinois.edu

ABSTRACT

The Smart Grid control systems need to be protected from
internal attacks within the perimeter. In Smart Grid, the In-
telligent Electronic Devices (IEDs) are resource-constrained
devices that do not have the ability to provide security anal-
ysis and protection by themselves. And the commonly used
industrial control system protocols offer little security guar-
antee. To guarantee security inside the system, analysis and
inspection of both internal network traffic and device status
need to be placed close to IEDs to provide timely informa-
tion to power grid operators. For that, we have designed
a unique, extensible and efficient operation-level traffic an-
alyzer framework. The timing evaluation of the analyzer
overhead confirms efficiency under Smart Grid operational
traffic.

CCS Concepts

eSecurity and privacy — Network security; eNetworks
— Network monitoring;

Keywords

Smart Grid; network security; traffic analysis

1. INTRODUCTION

For the Smart Grid control networks nowadays, data within
networks are usually not visible to the operators and not se-
cured at the same security levels as the communication with
external entities. To provide end-to-end security inside the
network system, both the end hosts and the network need
to be secured. In general purpose network such as the In-
ternet, the end hosts usually have their own security anal-
ysis and protection mechanism. Therefore, the analyzers
designed for general purpose network [1, 2, 3, 4, 5, 6] only
need to provide network analysis capability, i.e., flow/packet
or application level traffic analysis. In Smart Grid network,
shown in Figure 1, the end hosts are control centers and
Intelligent Electronic Devices (IEDs). Since the IEDs are

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotSoS ’16 April 19-21, 2016, Pittsburgh, PA, USA

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4277-3/16/04.

DOL http://dx.doi.org/10.1145/2898375.2898396

Klara Nahrstedt
Department of Computer
Science, University of lllinois
Urbana-Champaign
201 North Goodwin Avenue
Urbana, lllinois 61801-2302
klara@illinois.edu

Tim Yardley
Information Trust Institute,
University of lllinois
Urbana-Champaign
1308 West Main Street
Urbana, lllinois 61801-2307
yardley@illinois.edu

Substation Control Center

Substation Control Center

Analyzer

Analyzer

Power MGMT

Substation Control Center

Figure 1: Smart Grid network architecture

resource-constrained devices, the control centers are usually
responsible for both the device status analysis and network
traffic analysis. However, waiting for all measurement data
to be gathered in one location before processing data for di-
verse anomaly detection introduces huge delay, which may
result in huge losses during security breaches.

Our approach to the problem in Smart Grid networks is
the design of an extensible and efficient operation-level traf-
fic analyzer that will execute both flow-level network traffic
analysis and operation-level device status analysis to iden-
tify anomalies. For network traffic analysis in the flow level,
the analyzer is able to track which two hosts are commu-
nicating and what application protocol they are using. For
device status analysis in the operation level, the analyzer is
able to track the operations (e.g., read or write) that are
taking place in the industrial control systems protocols like
DNP3 and Modbus, and the targets of those operations(e.g.,
which coil or register value is read/written). The analyzer
collects, aggregates and stores these meta data statistics in
efficient data structure. Then, it inspects those aggregated
data to performs anomaly detection.

We deploy our analyzer at the boundary of the WAN at
both control center and substation ends, as it is shown in
Figure 1. By providing both network and device analysis
ability close to IEDs, we are able to give the power operator
more up-to-date view of the whole system and warn them of
potential breaches more promptly. To our knowledge, there
is no existing analyzer that provides operation-level device
analysis. And operation-level device analysis is crucial to
Smart Grid networks, since compromised devices can report
faked measurement data and execute malicious operations
(commands, instructions) which could cause huge damage
to the entire system.

2. ANALYZER DESIGN



| Pattern-based ’
Statistics

Network Identity Recognizer
Traffic Collector E> Statistics |:> Anomaly
Aggregator Detector

Figure 2: Modular Structure of the Analyzer

While designing the analyzer, there are two challenges
crucial to our analyzer: (1)Fuztensibility towards new de-
vices and new protocols using modularization as the Smart
Grid networks evolve, (2) Efficiency regarding real-time traf-
fic collection and analysis using multiple levels of statistics.
The modular structure of the analyzer is shown in Figure 2.
The analyzer consists of 4 modules: (1)Statistics Collector,
(2) Statistics Aggregator, (3)Anomaly Detector, (4)Pattern-
based Identity Recognizer.

The Statistics Collector examines the network packets
and collects 5 levels of statistics: (1)Sender of the packet,
(2)Receiver of the packet, (3)Protocol that the packet uses
for industrial control, (4)Function (e.g. read or write) that
the packet executes in its protocol, (5)Target of the function
(e.g. which coil or register). Level 1-3 are flow-level statis-
tics that is used for network traffic analysis, while level 4&5
are operation-level statistics that is used for device status
analysis.

Each packet header will go through four metadata extrac-
tors in order. The four extractors will extract the statistics
of level 1&2, 3, 4 and 5, respectively. The first extractor is
a general one which extracts sender and receiver informa-
tion. The other three, on the other hand, are protocol and
device specific and are responsible for extracting protocol,
function and target information, respectively. Currently, we
have extractors for two industrial control protocols, DNP3
and Modbus. An item_gen event will be triggered after the
packet is processed by the last extractor, which contains all
the statistics extracted by the current and all former extrac-
tors.

If new operations in new protocols need to be supported,
nothing in the analyzer but the last three extractors need to
be updated, which provides significant extensibility. More-
over, users can easily scale the number of levels of statistics
to collect. If the user is only interested in the flow-level
information, the analyzer can be configured into a general
network analyzer by only collecting the upper three levels
of statistics. This can largely speed up the collector and
make the analyzer more efficient, since the packet needs to
go through the first two extractors only instead of all four
in this case.

The Statistics Aggregator aggregates the information
of each packet and constructs a tree structure Treenew to
store the aggregated statistics. Each tree structure T'reepcw
corresponds to statistics aggregated over certain period of
time T, and each node corresponds to statistics of a spe-
cific kind of packets. An example of the data structure is
shown in Figure 3. Each node (leaf and internal) in the tree
includes the following fields: (1)Info string 1.5, (2)Accumu-
lated info string AIS, (3)Packet count PC, (4)Byte count
BC, (5)Response ratio RR (Func node only), (6)Response
delay RD (Func node only). IS is the value of the corre-
sponding statistics level. For example, I.S of sender level is

S: Sender

R: Receiver
P: Protocol
F: Function
G: Target

Figure 3: Statistics structure

its IP address and IS of function level is the function name.
AIS of a node, on the other hand, is constructed by ISes
of nodes on the path from the root to itself. And the node
stores statistical data of the kind of packet represented by
its AIS. For example, the node labelled “G1” in Figure 3
has AIS of “S1 — Ry — P1 — F1 — G1” and therefore stands for
packets that sender S; sends to receiver R; using protocol
P, with function F; performed on target GG1. The other four
fields are data fields used to store statistic data of that kind
of packets corresponding to the node during that period T),.
PC is the total number of the packets, while BC is the total
amount of bytes of the packets. RR and RD only exist for
function level nodes and are the ratio of responded request
functions and the delay of the response, respectively.

In the workflow of the Statistics Aggregator, the item_gen
event from the Statistics Collector is fed into an item counter,
which gets the information about the packet in the event
and increases the corresponding nodes’ counters. There is
also an aggregator which runs every 7}, aggregating the re-
sults during that period as well as constructing the statistics
structure. After the aggregator finishes the aggregation and
construction, it triggers an aggre_finish event which includes
the tree structure T'reenew of that period.

The Anomaly Detector triggers alarms when anomalous
traffic is seen in the network. Our current anomaly detector
utilizes a threshold-based algorithm, named Normal Tree.
The core idea of the algorithm is constructing a 'normal’
tree Treex which represents the normal traffic and using it
as a baseline. The next tree Treenew, constructed by the
Statistic Aggregator, is then compared to the baseline to
detect any potential anomaly.

The algorithm has two phases: initialization and anomaly
detection. In the initialization phase, which is the first k T},
periods, the algorithm just merges the k trees and constructs
the normal tree T'reer. The structure of the normal tree
Treey, is similar to Treenew except that we store a mean
value p and a standard deviation value o for each statistic
field (PC, BC, RR, RD) in each node N. In the anomaly
detection phase, we compare Treene, with Treex. One node
N in Treenew is considered to be the “same” with another
in Treey, if they have the same AIS. To compare the two
same nodes in two trees, we assign anomaly scores to each
data field of them. Suppose the field in T'reeneq, has a value
of X and the corresponding field in Treey has value p and
o. Utilizing the Chebyshev’s inequality, we define anomaly
score AS as follows:

2
- 5=—7w if|X -
AS(X,u,0) = {0 X—pz ! | ul > o (1)

otherwise



The anomaly score is in the range [0,1] and a higher score
represents more abnormal behavior. The algorithm then
compares that score with a predefined threshold 6 and decide
whether to trigger an alarm or not. The anomaly detection
phase of the algorithm is shown in Algorithm 1.

Algorithm 1 Normal Tree Algorithm

procedure ANOMALYDETECT(Treencw, Treeg, 0)
Traverse Treenew and Treer simultaneously in pre-
order.
for each node N: do

if N exists in both Treenew and Treex then
Use Equation 1 to calculate AS for each data
field of N and compare them with 6

else if N exists in T'reenew but not in T'reei,, then
Assign AS =1 to N instead of each data field
and compare it with 6

else if N exists in T'ree; but not in T'reene., then
Create a dummy node N in Treepe, with all
data fields set to zero. Then use Equation 1 to
calculate AS for each data field and compare
them with 6

end if

end for
end procedure

The Pattern-based Identity Recognizer identifies the
type of the traffic source and destination by monitoring cer-
tain request and response patterns in the traffic statistics. It
consists of a request-response coupler and a recognition rule
matcher. The request-response coupler analyzes the packet
statistics in the item_gen event. It couples each pair of re-
quest and response and constructs a variable which consists
of both of their functions. For each pair of request and
response, this variable is checked by the recognition rule
matcher to see whether it matches the function pairs given
by the recognition rules or not. If a match is found, the iden-
tities of the requester and the responder are also given by
the corresponding matched rule and output by the matcher.

3. TIME OVERHEAD EVALUATION

We use a network analysis framework, called Bro, to im-
plement our analyzer. All experiments run on a synthetic
Modbus trace set. For the Statistics Collector, we measure
the processing time of each individual packet and define it
to be the total runtime of the collector. Results show that
even if we collect statistics from all 5 levels, the runtime is
still short enough for the packets to be processed in com-
munication line speed. Moreover, reducing the levels has a
significant effect on the decrease of total runtime. For the
Traffic Statistics Counter, we are interested in the aggrega-
tion time, which is the time for the aggregator to aggregate
the counters and construct the current tree structure. The
measured time with different levels and aggregation periods
are shown in Figure 4a. It is clearly that the aggregation
time increase as the number of levels increases. And a larger
T, results in a longer aggregation time. For the Anomaly
Detector, the time to run the Normal Tree algorithm for one
period is denoted by the anomaly detection time. Varying
the number of levels and aggregation period 7T),, we have
different anomaly detection time shown in Figure 4b. Simi-
larly, the anomaly detection time increase as the number of

Aggregation Time Anomaly Detection Time
2500 6000
—T =1min —T_=1min
P I T =5 [
T =5min 5000 pomn
--oT_=20min
5 I i
4000

2000
3000

2000
1000

5 o 5

Time (us)

1

2 3 4 2 3 4
Number of Levels Number of Levels

(a) Aggregation time (b) Anomaly detection time
Figure 4: Time overhead with different levels and aggrega-
tion period

levels increases or T}, increases.

As it is shown in the above results, the effect of number
of levels is significant on the time overhead of different mod-
ules. Therefore, always using the least necessary number of
levels can save non-negligible amount of time and produces
the highest processing speed. In this way, efficiency can be
achieved by the analyzer.

4. CONCLUSION

In this paper, we show that our extensible and efficient
operation-level traffic analyzer framework inside of Smart
Grid networks provides network traffic and device status
analysis.

5. ACKNOWLEDGMENTS

This material is based upon work supported by the De-
partment of Energy under Award Number DE-OE0000676.

6. REFERENCES

[1] W. Erhard, M. Gutzmann, and H. Libati. Network
traffic analysis and security monitoring with unimon. In
High Performance Switching and Routing, 2000. ATM
2000. Proceedings of the IEEE Conference on, pages
439-446, 2000.

[2] R. Handayanto, Haryono, and J. Prianggono. Real-time
neural network-based network analyzer for hotspot
area. In Advanced Computer Science and Information
System (ICACSIS), 2011 International Conference on,
pages 323-330, Dec 2011.

[3] D. Keim, F. Mansmann, J. Schneidewind, and
T. Schreck. Monitoring network traffic with radial
traffic analyzer. In Visual Analytics Science And
Technology, 2006 IEEE Symposium On, pages 123-128,
Oct 2006.

[4] T. McGregor, H.-W. Braun, and J. Brown. The nlanr
network analysis infrastructure. Communications
Magazine, IEEE, 38(5):122-128, May 2000.

[5] M. Rahman, Z. Khalib, and R. Ahmad. A portable
network traffic analyzer. In Electronic Design, 2008.
ICED 2008. International Conference on, pages 1-6,
Dec 2008.

[6] E. Sharafuddin, N. Jiang, Y. Jin, and Z.-L. Zhang.
Hospital: Host and network system profiler and
internet traffic analyzer. In GLOBECOM Workshops
(GC Wkshps), 2010 IEEE, pages 420-424, Dec 2010.



