
OLAF: Operation-Level Traffic Analyzer

Framework for Smart Grid

Wenyu Ren∗, Steve Granda∗, Tim Yardley∗, King-Shan Lui† and Klara Nahrstedt∗

∗ University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Email: {wren3, sgrand2, yardley, klara}@illinois.edu
† The University of Hong Kong, Hong Kong, China

Email: kslui@eee.hku.hk

Abstract—The current Smart Grid supervisory control and
data acquisition (SCADA) systems are primarily protected at the
perimeter level with firewalls at the boundary of the networks.
However, besides the attacks coming from the external Internet,
internal attacks are equally concerning. Therefore, systems need
to be protected from internal attacks within the perimeter. In
Smart Grid, the Field Devices (FDs) are resource-constrained
devices that do not have the ability to provide security analysis
and protection by themselves. And the commonly used indus-
trial control system protocols offer little security guarantee. To
guarantee security inside the system, analysis and inspection
of both internal network traffic and device status need to be
placed close to FDs to provide timely information to power grid
operators. For that, we have designed a unique, extensible and
efficient operation-level traffic analyzer framework named OLAF.
The time overhead and performance evaluations of the analyzer
confirm efficiency and accuracy under our simulated Smart Grid
operational traffic.

I. INTRODUCTION

For the Smart Grid supervisory control and data acquisition

(SCADA) systems nowadays, various security mechanisms

(e.g., firewalls and gateways) are applied to the boundary

of the infrastructure to inspect and secure the information

exchanged with external entities. However, data within Smart

Grid networks, gathered by the internal field measurement

devices, is usually not visible to the operators and not secured

at the same security levels as communication with external

entities. As it is shown in Figure 1, Smart Grid wide-area

networks connect Smart Grid substation field networks with

operational control centers, and these networks open possi-

bilities for potential attacks, unless they embed end-to-end

security mechanisms and policies. Many power grid utilities

deploy wireless technologies [1] and shared interconnects for

cost reasons, but these solutions may weaken the security and

isolation of communication in case of attacks. Even if we

secure communication paths, insider attacks are possible due

to spear phishing, USB, network-based malware proliferation

[2], etc. As a result, it is a must for the utilities to go

beyond guarding the external edges of Smart Grid SCADA

networks and begin inspecting and protecting internal Smart

Grid SCADA networks at all levels.

To provide end-to-end security in the network system, both

the end host devices and the network need to be secured.

In general purpose network such as the Internet, the end

hosts usually have their own security analysis and protection

Fig. 1. Smart Grid SCADA network architecture and OLAF

mechanism. Therefore, the analyzers designed for general

purpose network [3]–[6] only need to provide network analysis

capability, i.e., flow/packet or application level traffic analysis.

In Smart Grid SCADA network, shown in Figure 1, the

end hosts are control centers and Field Devices (FDs) such

as Programmable Logic Controllers (PLCs), Remote Termi-

nal Units (RTUs) and Intelligent Electronic Devices (IEDs).

Since the FDs are resource-constrained devices which do not

have enough memory and computing resources to support

the addition of security capabilities [2], the control centers

are usually responsible for both the device status analysis

and network traffic analysis. In the current architecture, data,

collected by the measurement devices, is transmitted to the

control center for processing and analysis. As the number

of deployed measurement devices grows, it is increasingly

harder for the current architecture to satisfy the real-time

needs of protection and control applications. Therefore, the

current Smart Grid SCADA networks cannot provide up-to-

date situation awareness to the power grid operators. How-

ever, supervising device functionality, detecting networking

anomalies and preventing potential problems in substations, all

rely on situation awareness. The lack of up-to-date situation

awareness may result in huge losses during security breaches.

Our approach to the problem in Smart Grid SCADA net-

works is the design of an extensible and efficient operation-

level traffic analyzer, called OLAF, that has the capabilities

of both flow-level network traffic analysis and operation-level

device status analysis. OLAF is able to collect, aggregate

and analyze the statistics in network packets from both the

flow level for network traffic analysis and the operation level

for device status analysis. For network traffic analysis in

the flow level, OLAF is able to track which two hosts are

communicating. For device status analysis in the operation

level, the analyzer is able to track status information of the

utilized industrial control systems protocols (e.g., Modbus and

DNP3), ongoing operations (e.g., read or write), and the targets

of those operations(e.g., indexes of coils or registers that carry

values of the operation). OLAF collects, aggregates and stores

these meta data statistics in efficient data structure. Then, it

inspects those aggregated data to perform anomaly detection.

We deploy OLAF close to the end hosts inside the Smart

Grid internal network to provide up-to-date situation aware-

ness of network traffic and operational device status to the

power operator. OLAF provides the situation awareness by

promptly extracting, aggregating, displaying and analyzing

the control information in network packet headers as well as

the encapsulated data. By providing both network and device

analysis ability close to FDs, we are able to give the power

operator more up-to-date view of the whole system and warn

them of potential breaches more promptly.

The paper is structured as follows: We review the related

work in Section II. In Section III, we introduce the network

architecture of the Smart Grid control systems and describe

the design challenges and our approaches. In Section IV,

we present an overview of the analyzer design. Both time

overhead and performance evaluation of OLAF is shown in

Section V and we conlude the paper in Section VI.

II. RELATED WORK

Traffic analyzer is the main approach to provide network

traffic analysis for general purpose networks. There are many

works [3]–[6] aimed at designing network profiler and traffic

analyzer. However, to our knowledge, none of the existing

analyzers for general purpose networks provide operation-level

device analysis. And operation-level device analysis is crucial

to Smart Grid SCADA networks, since compromised devices

can send malicious operations or fake measurement data which

could cause huge damage to the entire system.

There are also works that build analyzers for SCADA

systems. Different approaches include traffic filtering systems

[7], [8], Bloom-filter-based/model-base/machine-learning-

based intrusion detection [9]–[12], SCADA Intelligence

Gateway [13] and a fine grained analysis of packet content

[14]. Our work differs from theirs in that instead of just

extracting and analyzing all the features separately, we factor

the features into multiple levels and store our statistics in

a tree structure. We have also designed a threshold-based

anomaly detection algorithm utilizing the tree structure. The

tree structure not only allows us to efficiently store and access

the statistics, but also gives us the ability to easily change the

granularity of our analysis and inspection.

III. NETWORK ARCHITECTURE AND DESIGN CHALLENGE

In this section, we first introduce the Smart Grid network

architecture. Then we describe the design problems of the

analyzer together with our approaches.

A. Network Architecture

The simplified network architecture of Smart Grid SCADA

system [2] is shown in Figure 1. The communications are be-

tween the SCADA Servers or Master Terminal Units (MTUs)

in control centers and FDs within the substations. The FDs can

be either measurement devices such as sensors which sample

grid state or control devices such as microprocessor-based

controllers which can execute control commands. They are the

sources of the data streams to control centers and destinations

of the control streams from control centers. Each substation

could have multiple FDs. Connected to multiple substations,

each of the control center is responsible for processing the

forwarded data and issuing control commands.

To perform analysis of the Smart Grid SCADA network

traffic and device status, our analyzers are placed at the

boundary of the WAN at both control center and substation

ends, as it is shown in Figure 1. To be more specific, the

uplink of the substation switch is connected to the input

interface of the analyzer and the output interface is connected

to the input of the router, making the analyzer inline to all

communications. A similar type of connection is done also

on the other side at the control center. Once the analyzers

are physically connected inline, all traffic that was previously

being communicated now transits through the analyzer and is

subject to inspection and analysis.

B. Design Challenge

While designing the analyzer, there are many challenges we

need to deal with. Two of them are crucial to our analyzer and

are discussed as follows:

• Extensibility1: As the Smart Grid SCADA networks

evolve, smarter devices and new industrial control pro-

tocols are deployed. Designing the analyzer to be easily

extensible to handle new operations of new devices using

new protocols is of great importance. The software design

concept, modularity, is our approach to this problem.

OLAF is constructed by different modules with different

functionalities (e.g., collection, aggregation, analysis).

To support the analysis of new operations from new

protocols, we can simply update corresponding modules

or add new modules instead of redesigning the entire

analyzer.

• Efficiency: Since OLAF is going to deal with real-

time traffic in the Smart Grid SCADA network and

provide prompt analysis and inspection of the packet,

time efficiency is crucial to our analyzer. The collection

of statistics needs to be done at the communication line

speed and the analysis also needs to be done fast enough

to be meaningful to power grid operators. To be efficient,

the analyzer should collect sufficient amount of statistics

at the minimum cost. We achieve this by factoring the

statistics into multiple levels and adjusting the number

of used levels according to requirements of metadata

accuracy as well as time and storage overhead.

1Here we only discuss the extensibility to new functionalities.

Fig. 2. Modular Structure of OLAF

IV. ANALYZER DESIGN

In this section, we present an overview of the analyzer

system design. The modular structure of OLAF is shown in

Figure 2. OLAF consists of 4 modules: (1)Statistics Collec-

tor, (2)Statistics Aggregator, (3)Anomaly Detector, (4)Pattern-

based Identity Recognizer.

The Statistics Collector examines the network packets and

collects the flow-level and operation-level statistics needed by

the network traffic and device status analysis. It then provides

the inputs for the Statistics Aggregator and the Pattern-based

Identity Recognizer. The Statistics Aggregator aggregates the

statistics and sends them to the Anomaly Detector for further

analysis and anomaly detection. The Pattern-based Identity

Recognizer identifies the type of the traffic source and destina-

tion by monitoring certain request and response patterns in the

statistics provided by the Statistics Collector. The four modules

will be described in more detail in the following subsections.

A. Statistics Collector

For each network packet that goes into the collector, there

are 6 levels of statistics we want to collect, which are shown

in Table I. Levels 1-2 are flow-level statistics that are used for

network traffic analysis, while levels 3-6 are operation-level

statistics that are used for device status analysis. Note that

not all 6 levels of statistics necessarily exist for each packet.

For example, a transport control packet (e.g., TCP ACK) does

not have an industrial control protocol (e.g., Modbus) header

and only has the upper two levels (e.g., levels 1 and 2) of

the statistics. On the other hand, a Modbus request packet to

read a specific register has all 6 levels of statistics. Another

thing worth noticing is that the Unit ID (UID) is a protocol

specific additional address used to differentiate aggregated data

or devices that do not have IP addresses. For example, the

substation could aggregate the measurement data from IEDs

and the control center will communicate with the substation

instead of each IED to collect those data. In this case, all the

packets will have IP addresses of the control center and the

substation. To differentiate data from different IEDs, the power

operator will assign different additional addresses to each IED

and use those as identifiers.

In the Statistic Collector, each packet header will go through

three metadata extractors in order. The three extractors will ex-

tract the statistics of levels {1, 2}, {3, 4, 5} and 6, respectively.

The first extractor is a general one which extracts sender and

receiver information. The other two, on the other hand, are

protocol and device specific and are responsible for extracting

{protocol, UID, function} and target, respectively. Currently,

we have extractors for two industrial control protocols, DNP3

TABLE I
5 LEVELS OF STATISTICS

Level Subject

1 Sender of the packet

2 Receiver of the packet

3
Protocol that the packet uses for industrial control (e.g.,
Modbus or DNP3)

4
Unit ID (UID) that is used by the protocol to identify different
devices

5
Function (e.g., read or write) that the packet conducts in its
protocol

6 Target of the function (e.g., which coil or register)

and Modbus. An item gen event will be triggered after the

packet is processed by the last extractor, which contains all

the statistics extracted by the current and all former extractors.

Consider an example of a control center with IP 1.2.3.4

sending periodic Modbus read coils requests to a substation

with IP 4.3.2.1. The control center sends the request once

per minute and tries to read coil 1 from device with UID of

2. After the request packet header goes through the OLAF

collector, the extractors extract the sender of 1.2.3.4, the

receiver of 4.3.2.1, the protocol of Modbus, the UID of 2,

the function of READ COILS, and target of 1. Note that

if new operations in new protocols need to be supported,

only the last two extractors need to be updated. All the other

parts can remain exactly the same, which provides significant

extensibility to the analyzer.

A useful feature of our analyzer is that users can easily

scale the number of levels of statistics to collect. If the user

is only interested in the flow-level information, the analyzer

can be configured into a general network analyzer by only

collecting the upper two levels of statistics. This can largely

speed up the collector and make the analyzer more efficient,

since the packet needs to go through the first extractor only

instead of all three in this case. If operation-level statistics

is required, the analyzer collects all 6 levels of statistics and

provides the capabilities of device status analysis and network

traffic analysis.

B. Statistics Aggregator

The Statistics Aggregator aggregates the information of each

packet and constructs a tree structure Treenew to store the

aggregated statistics. Each tree structure Treenew corresponds

to statistics aggregated over certain period of time Tp and

each node corresponds to statistics of a specific kind of

packets. An example of the data structure is shown in Figure

3. Each node (leaf and internal) in the tree includes the

following fields: (1)Info string IS, (2)Accumulated info string

AIS, (3)Packet count PC, (4)Average byte AB, (5)Response

ratio RR (function level node only), (6)Response delay RD

(function level node only). IS is the value of the corresponding

statistics level. For example, IS of sender level is its IP

address and IS of function level is the function name. AIS

of a node, on the other hand, is constructed by ISes of

nodes on the path from the root to itself. And the node stores

statistical data of the kind of packets represented by its AIS.

For example, the node labelled “G1” in Figure 3 has an AIS

Fig. 3. Statistics structure

of “S1−R1−P1−F1−G1” and therefore stands for packets

that sender S1 sends to receiver R1 using protocol P1 with

function F1 performed on target G1. The other four fields are

data fields used to store statistical data of that kind of packets

corresponding to the node during that period Tp. PC is the

total number of the packets, while AB is the average size in

bytes of the packets. RR and RD only exist for function level

nodes and are the ratio of responded request functions and the

delay of the response, respectively.

In the workflow of the Statistic Aggregator, the item gen

event is fed into an item counter, which gets the information

about the packet in the event and updates the corresponding

nodes’ date fields. There is also an aggregator which runs

every period Tp, aggregating the results during that period as

well as constructing the statistics structure. After the aggre-

gator finishes the aggregation and construction, it triggers an

aggre finish event which includes the tree structure Treenew
of that period. This event could be used for further analysis of

the statistics of the network traffic such as anomaly detection

which will be introduced in the following subsection.

C. Anomaly Detector

The Anomaly Detector is responsible for triggering alarms

when anomalous traffic is seen in the network. There are

mainly two approaches for intrusion detection: specification-

base and anomaly-based. Although the anomaly-based ap-

proach has the ability to detect novel attacks, the difficulty

of modelling the normal behaviour and the high false positive

rate prevent it from widespread use. However, it is shown that

the network traffic in SCADA systems shows much more reg-

ularity than traffic in general purpose network [14]. Therefore,

the anomaly-based approach is ideal for intrusion detection in

Smart Grid SCADA networks. Our current anomaly detector

uses the anomaly-based approach. Specifically, it utilizes a

threshold-based algorithm, named Normal Tree. The core idea

of the algorithm is constructing a ‘normal’ tree Treek which

represents the normal traffic and using it as a baseline. The

next tree, constructed by the Statistic Aggregator, Treenew is

then compared to the baseline to detect any potential anomaly.

The algorithm has two phases: initialization phase and

anomaly detection phase. In the trusted initialization phase,

which is the first k periods with total length of kTp, the

algorithm just merges the k trees and constructs the normal

tree Treek. The structure of the normal tree Treek is similar

to Treenew except that we store a mean value µ and a standard

deviation value σ for each statistic field (PC, AB, RR,

RD) in each node. So each node has IS, AIS, (µPC , σPC),
(µAB , σAB) (and additionally (µRR, σRR), (µRD, σRD) for

function level nodes).

In the anomaly detection phase, we compare Treenew with

Treek. One node N in Treenew is considered to be the

“same” with another in Treek if they have the same AIS. To

compare the two same nodes in two trees, we assign anomaly

scores to each data field of them. Suppose the field in Treenew
has a value of X and the corresponding field in Treek has

value µ and σ. Utilizing the Chebyshev’s inequality, we define

anomaly score AS as follows:

AS(X,µ, σ) =

{

1− σ2

|X−µ|2 if |X − µ| > σ

0 otherwise
(1)

The anomaly score is in the range [0, 1] and a higher score rep-

resents more abnormal behavior. The algorithm then compares

the score with a predefined threshold θ and decides whether

to trigger an alarm or not. The anomaly detection phase of the

algorithm is shown in Algorithm 1.

Algorithm 1 Normal Tree Algorithm

procedure ANOMALYDETECT(Treenew, T reek, θ)

Traverse Treenew in pre-order.

for each node N in Treenew: do

if N also exists in Treek then

Use Equation 1 to calculate AS for each data

field of N and compare them with θ. Continue

to traverse N ’s children.
else if N does not exist in Treek then

Assign AS = 1 to N instead of each data

field and compare it with θ. Stop traversing N ’s

children.
end if

end for

Traverse Treek in pre-order.

for each node N in Treek: do

if N does not exist in Treenew then

Create a dummy node N with all data fields set

to zero. Then use Equation 1 to calculate AS for

each data field and compare them with θ. Stop

traversing N ’s children.
end if

end for

end procedure

Consider our previous example of periodic read coils re-

quests. Suppose this is the only traffic in the network and

the substation never responds. We choose Tp = 10min,

k = 10 and θ = 0.5. The normal tree Treek is represented

by Root1 − S1 − R1 − P1 − U1 − F1 − G1. All nodes have

data fields (µPC , θPC) = (10, 0), (µAB, θAB) = (64, 0)
and F1 has additional data field (µRR, θRR) = (0, 0). Now

suppose the control center starts to send write coil requests

instead of read coils requests to the same device and target

at the same frequency. The next Treenew is represented by

Root2 − S2 − R2 − P2 − U2 − F2 − G2. The algorithm

traverses Treek and Treenew simultaneously in pre-order. It

first finds that Root1 and Root2 have the equal AIS and

therefore are same nodes. The calculated AS for both PC

and AB are zeros, which are less than θ = 0.5. Hence the

algorithm does not trigger any alarm and continues to compare

their children. Similarly, the algorithm compares S1 with S2,

R1 with R2, P1 with P2, U1 with U2 in order and triggers

no alarm. Then the algorithm finds that no node in Treek
has the same AIS with that of F2, so it assigns AS = 1
to F2. Since AS = 1 > 0.5 = θ, it triggers an alarm.

The algorithm also finds that no node in Treenew has the

same AIS with that of F1, so it creates a dummy node F0

with all data fields set to zero and compares F0 with F1.

ASPC = ASAB = 1 > 0.5 = θ, hence the algorithm triggers

two alarms.

The most criticized issue with the anomaly-based approach

is the high false positive rate. There are three parameters in our

analyzer that we can increase to reduce false positives: period

time Tp, number of training periods k, and the anomaly score

threshold θ. But they need to be carefully tuned since there are

trade-offs and restrictions. Because we only detect anomalies

at the end of each period, the period time Tp decides the

maximum anomaly detection delay! We need to keep it small

to provide prompt detection! A longer training phase has a

larger training cost, and makes it harder to keep the training

set clean. Increasing the threshold will make the detection

algorithm less sensitive, which might decrease the detection

rate. OLAF also has a feedback loop between the anomaly

detector and the power grid operator. If the operator finds one

alarm to be false positive, he or she can give feedback to

the detector so that the detector can adapt to avoid the same

mistake. Our current naive feedback mechanism just increases

the standard deviation in the corresponding data field in the

normal tree. More sophisticated methods will be explored in

the future work.

D. Pattern-based Identity Recognizer

The objective of the Pattern-based Identity Recognizer is to

identify the device type of the traffic source and/or destination

by monitoring certain request and response patterns in the

traffic statistics.

The recognizer consists of a request-response coupler and

a recognition rule matcher. The request-response coupler an-

alyzes the packet statistics in the item gen event. Based on

the statistics, it couples each pair of request and response

and constructs a variable which consists of the protocol and

both the request and response function codes. For each pair

of request and response, this variable is checked by the

recognition rule matcher to see whether it matches the function

pairs given by the recognition rules or not. If a match is found,

the identities of the requester and/or the responder are also

given by the corresponding matched rule and output by the

matcher.

V. EVALUATION

In this section, we present the evaluation of OLAF in terms

of time overhead and detection ability. We use a network anal-

ysis framework, called Bro [15], to implement our analyzer.

All experiments run on a simulated Modbus trace set. The

trace set includes a baseline traffic flow and some injected

anomalies. In the baseline traffic, one Modbus master (control

center) sends periodic operations to 10 Modbus slaves (FDs).

The valid operations in the baseline traffic and the frequencies

of them are shown in Table II.

TABLE II
FREQUENCIES OF VALID OPERATIONS IN THE BASELINE TRAFFIC

Operation Function code Frequency

Read Coils 01 Every 5 seconds

Read Discrete Inputs 02 Every 5 seconds

Read Holding Registers 03 Every 5 seconds

Read Input Registers 04 Every 5 seconds

Write Single Coil 05 Every 30 seconds

Write Single Register 06 Every 30 seconds

Write Multiple Coils 15 Every 5 minutes

Write Multiple Registers 16 Every hour

A. Time Overhead Evaluation

Since our analyzer is inline to all traffic going through, we

need to evaluate its processing time overhead to make sure it

can handle real time traffic. We run OLAF on a 64-bit Ubuntu

machine with 8 Intel i7-2600 3.40GHZ CPUs and 3.7GiB

memory. In each of the following experiments, we run the

corresponding modules on the same trace set for 5 rounds and

take the average.

For the Statistics Collector, we measure the processing

time of each individual packet and define it to be the total

runtime of the collector. For the Traffic Statistics Counter, we

are interested in the item process time and the aggregation

time. Item process time is the time for the item counter to

process the item gen event and update the corresponding date

fields and is measured per item seen event. Aggregation time,

which is measured per aggregation period, is the time for

the aggregator to aggregate the data fields and construct the

current tree structure. For the Anomaly Detector, the time

to run the Normal Tree algorithm for one period is denoted

by the anomaly detection time. Note that the total real-time

processing time of each packet is the sum of collector runtime

and item process time. And since the aggregation and anomaly

detection is only done once for each aggregation period, they

are not subject to the real-time overhead requirement.

Figure 4 shows the above four kinds of time overhead with

different number of levels and aggregation period time. We can

see that even if we collect statistics from all 6 levels, the total

real-time processing time of each packet is still below 350 µs.

And this is short enough for the packets to be processed in

communication line speed. Moreover, Tp does not affect the

aggregation time and anomaly detection time much since the

traffic follows certain patterns. Most importantly, reducing the

number of levels has a significant effect on the decrease of the

time overhead of different modules. Therefore, always using

the least necessary number of levels can save non-negligible

(a) Collector runtime (b) Item process time

(c) Aggregation time (d) Anomaly detection time

Fig. 4. Time overhead with different levels and aggregation period

amount of time and produces the highest processing speed. In

this way, efficiency can be achieved by the analyzer.

B. Detection Ability Evaluation

To evaluate OLAF’s anomaly detection ability, we inject

anomalies in different levels to the baseline traffic. The in-

jected anomalies are listed in Table III. We fix the period

time Tp to be 10 minutes and the anomaly detection phase

to be 6 hours, and change the training phase length k and

anomaly score threshold θ. We also evaluate the analyzer in

both feedback off and on situations. OLAF is able to detect

all nine anomalies in all cases, which means it never miss any

anomaly. And we define ratio of number of false alarms to

number of total node checked to be false alarm rate. The false

alarm rate in different cases are listed in Table IV. We can

see that increasing training time and anomaly score threshold

both reduce false positives. And the feedback loop also has a

huge effect on decreasing the false positive rate.

TABLE III
INJECTED ANOMALIES

Level Injected anomaly

Flow level

Add one new Modbus master to send a set of
operations to one Modbus slave
Drop one Modbus slave

Send a bunch of ICMP packets to one Modbus slave

Increase the response delay of one Modbus slave
from 30ms to 200ms
Increase the packet drop rate of one Modbus slave
from 0 to 30%

Operation level

Stop sending some operations to one Modbus slave

Send several new operations to one Modbus slave

Change the sending frequency of some operations for
one Modbus slave
Change the targets of one operation for one Modbus
slave

VI. CONCLUSION

In this paper, we present an extensible and efficient

operation-level traffic analyzer framework, called OLAF, for

Smart Grid SCADA networks to provide network traffic anal-

ysis and device status analyses. By collecting, aggregating and

TABLE IV
FALSE ALARM RATE WITH DIFFERENT PARAMETERS

Training Time 4 hours 8 hours

Feedback Off On Off On

Threshold θ
0.9 4.16% 1.07% 3.01% 0.86%
0.99 2.35% 0.62% 0.10% 0.06%

0.999 2.26% 0.56% 0.05% 0.03%

analyzing statistics in both flow level and operation level on the

communication within the internal network, OLAF increases

the situation awareness and security of the control system.

Our results are strongly encouraging to place the extensible

and efficient analyzer in Smart Grid SCADA networks.

ACKNOWLEDGMENT

This material is based upon work supported by the Depart-

ment of Energy under Award Number DE-OE0000676.

REFERENCES

[1] H. Jin, S. Uludag, K.-S. Lui, and K. Nahrstedt, “Secure data collection in
constrained tree-based smart grid environments,” in Smart Grid Commu-

nications (SmartGridComm), 2014 IEEE International Conference on.
IEEE, 2014, pp. 308–313.

[2] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ics) security,” NIST special publication, vol. 800, no. 82, pp.
16–16, 2011.

[3] T. McGregor, H.-W. Braun, and J. Brown, “The nlanr network analysis
infrastructure,” Communications Magazine, IEEE, vol. 38, no. 5, pp.
122–128, May 2000.

[4] W. Erhard, M. Gutzmann, and H. Libati, “Network traffic analysis and
security monitoring with unimon,” in High Performance Switching and

Routing, 2000. ATM 2000. Proceedings of the IEEE Conference on,
2000, pp. 439–446.

[5] D. Keim, F. Mansmann, J. Schneidewind, and T. Schreck, “Monitoring
network traffic with radial traffic analyzer,” in Visual Analytics Science

And Technology, 2006 IEEE Symposium On, Oct 2006, pp. 123–128.
[6] M. Rahman, Z. Khalib, and R. Ahmad, “A portable network traffic ana-

lyzer,” in Electronic Design, 2008. ICED 2008. International Conference

on, Dec 2008, pp. 1–6.
[7] I. N. Fovino, A. Coletta, A. Carcano, and M. Masera, “Critical state-

based filtering system for securing scada network protocols,” IEEE

Transactions on industrial electronics, vol. 59, no. 10, pp. 3943–3950,
2012.

[8] B.-K. Kim, D.-H. Kang, J.-C. Na, and T.-M. Chung, “Abnormal traffic
filtering mechanism for protecting ics networks,” in 2016 18th Interna-

tional Conference on Advanced Communication Technology (ICACT).
IEEE, 2016, pp. 436–440.

[9] S. Parthasarathy and D. Kundur, “Bloom filter based intrusion detection
for smart grid scada,” in Electrical & Computer Engineering (CCECE),

2012 25th IEEE Canadian Conference on. IEEE, 2012, pp. 1–6.
[10] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and

A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA security scientific symposium, vol. 46.
Citeseer, 2007, pp. 1–12.

[11] J. M. Beaver, R. C. Borges-Hink, and M. A. Buckner, “An evaluation of
machine learning methods to detect malicious scada communications,” in
Machine Learning and Applications (ICMLA), 2013 12th International

Conference on, vol. 2. IEEE, 2013, pp. 54–59.
[12] L. A. Maglaras and J. Jiang, “Intrusion detection in scada systems using

machine learning techniques,” in Science and Information Conference

(SAI), 2014. IEEE, 2014, pp. 626–631.
[13] B. Panja, J. Oros, J. Britton, P. Meharia, and S. Pati, “Intelligent gateway

for scada system security: A multi-layer attack prevention approach,”
in 2015 IEEE International Conference on Computational Intelligence

and Virtual Environments for Measurement Systems and Applications

(CIVEMSA). IEEE, 2015, pp. 1–6.
[14] D. Hadziosmanovic, D. Bolzoni, S. Etalle, and P. Hartel, “Challenges

and opportunities in securing industrial control systems,” in Complexity

in Engineering (COMPENG), 2012. IEEE, 2012, pp. 1–6.
[15] V. Paxson, “Bro: a system for detecting network intruders in real-time,”

Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

