
Practical and Secure Machine-to-Machine Data
Collection Protocol in Smart Grid
Suleyman Uludag1, King-Shan Lui2, Wenyu Ren3, and Klara Nahrstedt3

1Department of Computer Science, University of Michigan - Flint, MI, USA
2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

3Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract—One of the most promising growth and deploy-
ment domains of Machine-to-Machine (M2M) communications
is within the context of Smart Grid and its Advanced Meter-
ing Infrastructure. Data generation, collection, monitoring, and
processing potentials are expected to be greatly expanded. An
accompanying security for the communications infrastructure
is generally agreed to be unmet by the legacy power grid
networking protocols. In this paper, we present a new customized,
secure, and scalable M2M data collection protocol for the Smart
Grid. We use a hierarchical architecture with intermediary nodes
collecting and relaying the data securely from measurement
devices back to the power operator. While the data collectors
verify the integrity, they are not given access to the content, which
may also pave the way for third party providers to deliver value-
added services or even the data collection itself. We also report
some preliminary experimental results from a testbed developed
from Raspberry Pi devices to emulate the resource-constrained
measurement devices.

I. INTRODUCTION

The Power Grid is set to include a substantially large
number of sensors or measurement devices as part of the
transitioning to the Smart Grid (SG). Collecting real-time
information for monitoring, from generation to distribution
of energy, will be a critical task for successful implemen-
tation. Security and scalability of the data collected must be
ensured in such an environment. A hierarchical data collection
framework is usually adopted to make data collection scalable.
For example, in Advanced Meter Infrastructure (AMI), smart
meters first report data to concentrators [1]–[3]. Collected data
may further be processed by the concentrators before reporting
to the power operator. With these intermediary devices, the
power operator is relieved from the burden of maintaining
separate connections with each measurement device or smart
meter, which is neither practical nor scalable. Besides, data
concentrators can aggregate the data reported by the smart
meters to further reduce the message size.

Fig. 1 presents the data collection model we consider in
this paper. The Measurement Devices (MDs) are sensors or
smart meters that generate measurement data of the physical
infrastructure. They are small and are constrained devices in
terms of computational power, memory, and communication
capabilities. While each MD may report its data to different
Data Collectors (DCs), it is required that at least one DC
is responsible for collecting each MD’s data at any point in
time. Each DC may connect to multiple MDs. Solid lines in

PO

DC DC DC DCDC

MD MD MD MD MD MD

Fig. 1. Data Collection Model.

Figure 1 indicate that each DC will be communicating with
the Power Operator (PO) on an ongoing basis, and dashed
lines show that there are no predetermined pairings of MD-
DC information exchange while any association is possible.
The PO has a direct physical connection with each DC. PO
and DCs are relatively more powerful than MDs. The data are
reported to the PO via a set of DCs. If DCs are assumed to
be within the security perimeter of the PO, then they may be
trustworthy. However, due to the massive number of MDs and
their dispersion over a large area, such an assumption may not
be appropriate.In addition, one of the seven actors identified by
the NIST in the SG Framework [4] is service providers which
are to provide third party value-added services, including cloud
computing [5], outsourcing [6], etc. For example, our approach
makes DC outsourcing possible.

In some other applications [7], DCs are mobile and the
connections between DCs and MDs are dynamic. Therefore, it
would be desirable for MDs to encrypt their data in a way that
DCs cannot have an access to, that is, each MD should encrypt
its data using an appropriate key to keep its data private to
DCs and other possible adversaries. On the other hand, due
to limitations in memory and computational capabilities, the
encryption algorithm used should be efficient. PO should also
protect its commands appropriately.

In this paper, we develop a custom-tailored key establish-
ment scheme and data collection protocol for a SG Machine-
to-Machine (M2M) communications scenario. SG is one of the
most relevant application areas for M2M communications [8],
[9] and the setting we consider in this work falls within the
same context. Our proposal protects the data and commands
sent between PO and MDs via DCs in a scalable and efficient
manner. Specifically, data reported by a certain MD can only
be accessed by the PO, although the message is relayed by an
untrusted DC. The protocol is light-weight in the sense that
MDs do not have to perform expensive operation to report data
and does not take much memory to remember key information.

To show the practicality and feasibility of our protocols, we
have developed a small testbed of Raspberry Pi devices with
our protocol implementation to mimic the constrained MDs.
To the best of our knowledge, ours is the first in the literature
in making use of a testbed of Raspberry Pi devices in SG
M2M data collection. We report a preliminary results from
our experiments in the testbed.

The rest of the paper is organized as follows: Sec. II presents
the related work. Our secure data collection protocol with
its operations is summarized in Sec. III. Sec. IV provides
the details for the key establishment scheme. Secure data
collection is presented in Sec. V. Testbed and experimental
results are provided in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

[10] gives an overview of the security and privacy issues in
the smart grid. Data integrity and confidentiality are the major
security concerns. End-to-end data protection has been studied
extensively in the Internet. However, most schemes, such as
TLS [11], assume that the devices have abundant memory
and computational power to perform expensive cryptographic
operations. In smart grids, on the other hand, reporting devices
have limited memory with a slow CPU. Traditional Internet
security protocols are thus not suitable for data collection in
smart grids. DNP3 [12] is a standard communication protocol
used in SCADA (Supervisory Control And Data Acquisition).
It assumes all components are within the security perimeter
of the operator and is not designed to protect data forwarded
by the DC as in our situation. A more recent standard
for substation automation is the IP-based IEC 61850 [13].
Yet, IEC 61850 was also initially designed without security
mechanisms [14]. It is thus generally agreed by the experts
that new security protocols for data collection and command
delivery need to be developed.

Some efforts have been put on key management of smart
meters and sensors in smart grid. [15] describes a key man-
agement scheme for secure communication in smart grid. The
scheme develops keys for unicast, multicast, and broadcast.
Nodes are arranged as binary trees and the secret key of parent
is the hash of the children keys. How different parties process
or encrypt the data is not discussed. It is not clear whether the
data reported by a certain meter can be hidden from the data
collector. [16] also considers the key management problem for
a massive number of smart meters. Key graph is used to man-
age unicast, multicast, and broadcast keys. Nevertheless, as
DC is not considered in the architecture, the key management
scheme cannot be applied in our scenario. The authors in [17]
apply the elliptic curve public key technique to perform key
management. Mutual authentication between different entities
are studied. Nevertheless, there is no discussion on how to
protect the data reported by a sensor.

Some protocols have been developed to establish shared
keys when the two parties can establish direct communication.
[18] describes how to established keys to secure unicast and
multicast communications. The authors suggest keys to be
established by direct connection between the two entities that

need shared keys. [19] describes how to apply the Diffie-
Hellman mechanism to establish a shared key for data authen-
tication between two parties. [20], on the other hand, relies on
identity-based cryptography. All these mechanisms cannot be
applied in the hierarchical data collection model because the
PO and the MDs cannot establish a direct connection. [21]
studies how to reduce the storage needed when the control
center needs to establish multiple sessions with the MDs.
MDs are configured with a long-term shared key with the
control center upon manufacturing. A function is used to
generate this key. Thus, the control center does not have to
remember a lot of keys but can derive the key when needed.
Nevertheless, the key developed this way is not very secure.
Besides, the protocol is not suitable for the hierarchical data
collection architecture. [22] studies how data generators report
to a honest-but-curious storage center for a user to retrieve
later. The data collection trust model assumed in this paper is
the most related to our scenario. The storage center is similar
to the DC in our model that can be semi-trusted, and data
should be hidden from it. MDs in our model are the data
generators, while PO is a user in their model. However, the
paper suggests to use expensive identity-based and public key
encryption to protect data to incorporate policy consideration.

An approach presented in [23] is based on symmetric
cryptography to provide data confidentiality and authentication
between sensors and the base station. [24] describes a protocol
for DC to collect data from an MD, requiring the PO and the
MD to establish a new shared key for every data collection.
The protocol in this paper smartly uses a group key to allow
data to be collected with less overhead. Unlike [24], we
provide an implementation in this paper. Another category
for providing security takes advantage of in-network data
processing (aka aggregation) to induce some masquerading
behavior on the transmitted data [3], [25]–[27].

III. SYSTEM AND PROTOCOL OVERVIEW

A. Operations and their requirements

Our communications architecture enables the PO to initiate
data collection of all or a group of MDs in a timely and
secure manner. This is a regular call-for-data from the PO
which is performed periodically. Data reported by a certain
MD should be authenticated and should be read only by the
PO but not by other MDs or any DC. Besides, an MD may
launch an urgent data reporting process. This is done when
MD detects something abnormal and would like to report to
the PO. Security requirement of this operation must be of the
same level as the the regular data collection.

We develop our protocol to be secure from outsider attacks
such as eavesdropping, impersonation, and message tamper-
ing, etc. There are three types of insiders in the protocol:
PO, DCs, and MDs. As the PO is the main control of the
whole system and the recipient of all data, we assume it is
always trustworthy. The DCs, on the other hand, are honest-
but-curious. They are honest in the sense that they would
follow the protocol as specified. They would not impersonate
other entity or tamper any data. On the other hand, they are

curious and eager to read the data transmitted. The MDs
should be trustworthy at the time of installation. However,
as they are located in the field which may not be under a very
secure physical environment, it is possible that an attacker
takes over the MD some time after the installation. In this
case, the attacker can read the key information kept in the
device and can report fake data to the PO on behalf of the
MD. Our protocol cannot identify whether the data reported
using a legitimate key is generated by an attacker, but our
protocol ensures this compromised MD cannot impersonate
others based on the key information it has. To detect whether
a certain MD is compromised, the data reported and behavior
should be carefully analyzed, which is beyond our scope here.

B. System Parameters

PO, DCs, and MDs are assumed to have been equipped
with the long-term secrets, a set of system parameters, and
the required cryptographic functions in advance. A DC or MD
should have all parameters and functions configured before it
is installed in the field.

Long-term secrets/keys: We assume there is a key server
that can generate a set of public and private keys for each
entity in the system. The public/private key pair is configured
into a DC or MD before it is installed in the field. PO, on
the other hand, apart from keeping its own key pair, it also
remembers the public keys of all MDs and DCs in the system.
We denote the public key and private key of node A as A+ and
A−, respectively. It is not likely the PO would like to publish
the public keys of DCs and MDs in an open site as PO should
not expect or allow any outsider to know the keys. However,
our protocol is secure even if the attackers know the public
key information of any DC or MD they want to attack.

Diffie-Hellman (DH) parameters: We adopt the Diffie-
Hellman key exchange mechanism to develop shared keys.
The DH key exchange works as follows: When Alice and
Bob want to generate a shared key using DH, they first each
generate a random number and keep it as a secret. Let a
and b be the secret, also called the secret DH half key, of
Alice and Bob, respectively. They, then, exchange gamod p
and gbmod p, where p is prime and g is a primitive root
mod p. gamod p (gbmod p) is called the public half key
or public DH key of Alice (Bob). When Alice receives the
public half key gbmod p sent by Bob, she can compute the
shared key gabmod p by (gbmod p)amod p. Similarly, Bob
can compute the shared key by (gamod p)bmod p. Although
eavesdroppers can overhear gamod p and gbmod p, they
cannot compute gabmod p. Therefore, the shared key is secure.
Through removing half keys and shared keys from memory
after they are no longer used appropriately, DH keys also
support perfect forward secrecy [28].
Before using the DH mechanism, the PO, DCs, and MDs have
to agree on the g and p to be used. We assume PO picks g and
p and configures them into DCs and MDs before installation.
To make the discussion concise, we drop mod p when the
context is clear in the rest of the paper.

Cryptographic functions: To provide authentication, confi-
dentiality, integrity, and other security protections, messages
have to be encrypted, hashed, or signed. We assume the PO
selects appropriate cryptographic algorithms for the purposes,
and these functions are installed in the DCs and MDs. For
example, PO may use AES for symmetric key encryption
and SHA-256 for hash computation. Table I summarizes the

Name Description
PKE(K,M) apply public key encryption on M using K
SKE(K,M) apply symmetric key encryption on M using K
SIGN(A,M) The signature of M by A (created using A−)
HASH(K,M) compute the keyed-hash of M using key K
GENKEY (X ,Y) generate a key based on X and Y

TABLE I
SYSTEM FUNCTIONS

functions used in the protocol. Function GENKEY (X ,Y) is
used when we need a key generated from two numbers X
and Y . This function is very computationally inexpensive
that the time needed is negligible when compared with any
cryptographic function.

C. Protocol Overview

The long-term keys in our system should not be used for
data encryption because, on one hand, public key encryption
is expensive, and on the other hand, it is not a good practice
to use the long-term keys to encrypt data. Just like other
existing network security protocols, we first establish shared
keys among PO, DCs, and MDs using the long-term keys, and
then these shared keys are used for data protection. To ensure
data reported by a certain MD can be decrypted by the PO
only, we need to establish a key that is known by PO and
that MD. We call a key that is known by exactly two parties
a pairwise shared key. PO and each DC should also develop
a pairwise shared key to protect their conversations. The key
used for DC to talk to MD, on the other hand, is known by
the PO too. We will explain later the reason of establishing
this key in this way. Apart from keys shared between two or
three parties, we also develop a set of group keys where each
group key is shared among the PO, a certain DC, and MDs
that connect to that DC. The group keys allow data collection
to be done in a fast and light-weight manner.

The PO initiates the Shared Key Generation Process to
establish the necessary keys. We adopt the Diffie-Hellman key
exchange mechanism to develop all shared keys between two
or three parties. We authenticate the DH half keys using the
long-term public keys to avoid the man-in-the-middle attack.
Once the shared keys and group keys are established, they will
be used for data collection.

DH operations are expensive. We should not re-generate
the DH shared keys for every data collection. However, it
may not be very secure if we use the same shared keys to
encrypt data collected at different times. To strike a balance
of computational complexity and security, the data encryption
key for each data collection depends on both the DH shared
key and the timestamp. As the timestamp changes for every
data collection, the data encryption key will be changed even
though we do not re-generate the DH shared key. In the

following, we will first describe in the Shared Key Generation
process in Section IV. The detailed message exchanges of data
collection will be provided in Section V.

IV. SHARED KEY GENERATION

Before the PO initiates the shared key generation process,
PO has to determine the set of MDs that a particular DC has
to talk to. We let MDLISTi be the set of MDs assigned to DCi.
For the ease of discussion, we denote KA

B as the shared key
between A and B. We refer the set {PO,DCi}∪MDLISTi as
group Gi, and the group key of Gi is GKi. We use M1||M2 to
represent concatenating messages M1 and M2. The definitions
of the functions used can be found in Table I.

Figure 2 presents a summary of the shared key generation
process. When the procedure starts, the only keys an MD
or a DC knows are its own public/private keys and the
public key of the PO. After the procedure, MD j should
have established KPO

MD j
, KDCi

MD j
, and GKi if MD j ∈ MDLISTi.

Through the procedure, DCi knows GKi, KPO
DCi

and KDCi
MD j

for
all MD j ∈MDLISTi. The detailed procedure is as follows (For
clarify, we drop subscript i and j in Figure 2.):

SKE(K,	 MDLIST	 ||	 C	 ||	 e	 ||	 SIGN(PO,	 C))	

PO	 DC	 MD	

PKE(DC+,	 ga	 ||	 T1)	 SIGN(PO,	 ga	 ||	 T1)	

PKE(PO+,	 gb	 ||	 T1)	 SKE(K,	 T1)	
K	 =	 gab	 mod	 p	

C	 =	 gc	 ||	 ge	 DC+,	 PKE(MD+,	 C	 ||T2),	 	
SIGN(PO,	 C),	 SIGN(DC,	 ge||T2)	

PKE(DC+,	 gd)	 SIGN(MD,	 gd	 ||	 T2)	

SKE(K,	 gd||	 T2)	 SIGN(MD,	 gd	 ||	 T2)	 gcd	 –	 shared	 key	 between	 PO	 and	 MD	
ged	 –	 shared	 key	 between	 DC	 and	 MD	
ge	 –	 group	 key	 	

Fig. 2. Shared Key Generation

1) PO generates a DH secret a to talk to the DCs and captures
the current timestamp T 1. It then encrypts and signs ga and T 1.
The message to DCi is thus protected from message tampering
and impersonation.

PO→ DCi: PKE(DC+
i ,ga||T 1),SIGN(PO,ga||T 1)

2) DCi verifies whether the message has been tampered by
verifying whether T 1 differs from DC’s local clock within
a reasonable amount. It then generates its DH secret b and
computes KPO

DCi
as gabmod p. It also replies to PO with its

public DH key. Note that an attacker cannot impersonate DCi
as he does not know DC−i .

DCi→ PO: PKE(PO+,gb||T 1),SKE(KPO
DCi

,T 1)
3) After verifying SKE(K,T 1) to ensure it was DCi who sent
the message, PO sends DCi the list of MDs, together with the
MDs’ public keys, that it assigns DCi to talk to. It also creates
C, which is part of the message, for DCi to talk to the MDs in
the list. C contains two DH half keys: gc and gei . gc is used
for generating KPO

MD j
, and gei is used for generating KDCi

MD j
. It is

worth noting that to allow DCi to develop KDCi
MD j

using the DH
mechanism, DCi has to know ei. Therefore, PO sends ei to DCi.
In other words, PO picks the DH secret key for DCi instead
of allowing DCi to pick by itself. This can avoid curious DCs
to work together to guess the DH secret of an MD [24]. As

PO knows ei, PO can also develop KDCi
MD j

. Apart from the DH
half keys, the public keys of the MDs should also be sent (We
assume they are included in MDLISTi in Figure 2). PO sends
SIGN(PO,C||DC+

i) to avoid messages from being tampered.
PO→ DCi: SKE(K,MDLISTi||C||ei||SIGN(PO,C||DC+

i))
where C = gc||gei

As the PO, DCi, and MD j all know gei and we protect gei

through encryptions and signatures, we assign the group key
GKi to be gei .
4) After verifying the message sent from the PO, DCi captures
the current timestamp T 2 and sends the information to MD j
in MDLISTi. DCi also needs to send its public key. To protect
DC+

i and C||T 2 from being tampered, SIGN(PO,C||DC+) and
SIGN(DCi,gei ||T 2) are sent as well.

DCi→MD j: DC+
i , PKE(MD+

j ,C||T 2), SIGN(PO,C),
SIGN(DCi,gei ||T 2)

5) After retrieving the DH half keys from the message sent
by DCi, MD j generates its DH secret d. It establishes KPO

MD j

to be gcd and KDCi
MD j

to be geid . As DCi sends the same gei

and T 2 to all other MDs in MDLISTi, MD j has to sign gd to
authenticate the reply.

MD j→ DCi: PKE(DC+
i ,gd), SIGN(MD j,gd ||T 2)

6) When DCi receives the message, it retreives gd and verifies
the signature. If so, it sends PO the key information.

DCi→ PO: SKE(KPO
DCi

,gd ||T 2), SIGN(MD j,gd ||T 2)
7) If gd ||T 2 encrypted using KPO

DCi
and signed by MD j are

the same, the message has not been tampered. PO can then
compute KPO

MD j
to be gcd . Note that as DCi can only read gc

and gd but neither c nor d, it cannot compute gcd . gcd is thus
a key shared by PO and MD j only.

V. DATA COLLECTION

A. Data Collection of a Group of or All MDs
It is a regular data collection initiated by the PO. Data

is encrypted using KPO
MD j

so that no outsiders, as well as no
DCs, can read the data. As MDs are limited in computational
capability, they should not be requested to perform a lot of
expensive operations. The whole data collection process is
shown in Fig. 3. In the figure, K1 is KPO

DCi
, K2 is KPO

MD j
, and

K3 is KDCi
MD j

.
PO	 DC	 MD	

SKE(K1,	 T	 ||	 SIGN(PO,	 “DATA	 COLLECTION”	 ||	 T))	

SKE(GK,	 T	 ||	 SIGN(PO,”DATA	 COLLECTION”	 ||	 T))	

PRODATA,	 HASH(GENKEY(K3,	 T),	 PRODATA)	

SKE(GENKEY(K1,	 T),	 PRODATA)	

K1	 –	 shared	 key	 between	 PO	 and	 DC	
K2	 –	 shared	 key	 between	 PO	 and	 MD	
K3	 –	 shared	 key	 between	 DC	 and	 MD	
GK	 –	 group	 key	 PRODATA	 is	 encrypted	 and	

integrity-‐protected	 using	
GENKEY(K2,	 T)	

Fig. 3. Data Collection.
1) When PO wants to collect data, it first captures the current
timestamp T , signs it, and sends a message to DCi. The
signature avoids impersonation.

PO→ DCi:
SKE(KPO

DCi
,T ||SIGN(PO,”DATA COLLECT ION”||T))

2) After verifying the message from the PO, DCi sends T to
MD j ∈MDLISTi.

DCi→MD j: SKE(GKi,T ||SIGN(PO,”DATA”||T))
It is worth noting that the message is encrypted using the group
key GKi. In this way, DCi only needs to create a single message
for all MDs in its group. Since any member in Gi can encrypt
something using GKi, we need to include a signature of PO
to authenticate the message.
3) After verifying T , MD j generates a key MK =
GENKEY (KPO

MD j
,T). An encryption key and an integrity key

developed based on MK are used to protect the data. The
protected data is denoted as PRODATA. MD j also generates
DK = GENKEY (KDCi

MD j
,T). The hash of PRODATA using DK

is computed and sent to DCi. By using MK and DK, which
depend on T , we can ensure the actual keys to be used to
protect the data would be different at different times even
though the same shared keys (KPO

MD j
and KDCi

MD j
) are used.

MD j→ DCi: PRODATA,HASH(DK,PRODATA)
4) DCi verifies the hash to ensure PRODATA was generated
by MD j even it cannot decrypt PRODATA. It then forwards
PRODATA to PO.

DCi→ PO: SKE(GENKEY (KPO
DCi

,T),PRODATA)
Alternatively, DCi can encrypt all the replies from MDs in
a single message. In this case, only a single symmetric key
encryption is needed, but PO may receive some data later.
5) Finally, PO develops MK on its own to extract the data
from PRODATA.

We now analyze the complexity from the MD’s perspective.
To decrypt the message from the DC, MD has to perform
one symmetric key decryption and one signature verification.
To prepare the PRODATA, it has to perform one symmetric
key encryption and one hash computation. It has to perform
another hash computation for the integrity check for the DC.
Therefore, MD only has to perform one single expensive
public key operation in the whole data collection process. Our
mechanism is thus very light-weight.

B. MD j initiates an urgent data report

1) MD j first identifies a certain DCi to relay the message
and records the current timestamp T . PRODATA and DK are
generated as in Step 3 in Section V-A.

MD j→ DCi:
SKE(KDCi

MD j
,T ||PRODATA||HASH(DK,PRODATA))

2) DCi verifies the hash and forwards PRODATA to PO.
DCi→ PO: SKE(KPO

DCi
,T ||PRODATA)

3) PO can then extract T using KPO
DCi

to develop the appropriate
keys to decrypt PRODATA.

In reporting emergency information, latency and reliability
are very important. In the protocol, MD j does not need to
perform any expensive public key operation before sending
the data report. The latency is thus very small. To en-
hance reliability, MD j can send the data to PO via multiple

DCs. It has to compute HASH(DK,PRODATA) and encrypt
T ||PRODATA||HASH(DK,PRODATA) using different keys
for different DCs in Step 1. As both operations are not
expensive, MD j can send out the reports promptly.

VI. EXPERIMENT RESULTS

To evaluate the performance of our protocol, we have
built a testbed to analyze the time consumption of data
collection process of the protocol. We have used credit card
sized Raspberry Pi devices in our testbed to emulate the
resource-constrained MDs. Raspberry Pi is a tiny, single-board
computer (or embedded device) with limited computational,
storage and communications capabilities. The CPU is 700MHz
and the memory available is 512MB.

Since MDs are highly resource-constrained in terms of
computation power and storage compared to POs and DCs,
the bottleneck of the protocol is on the MD side. Thus, we put
our experiment’s emphasis on the part between DC and MD
of the protocol. Our testbed includes a laptop, which stands
for the DC, and 15 Raspberry Pis, which act as multiple MDs.
All of them are configured to run in an ad-hoc wireless mode.
That is, all the MDs are able to communicate with the DC in
an ad-hoc manner without any access point.

In our experiments, we focus on the message generation,
communication, message processing between DC and MD.
We measure the total time consumption between DC and MD
for the data collection process in our protocol. The total time
includes 5 parts: (1) the time for DC to generate the message
to send to MD; (2) the transmission time for the message
from DC to MD; (3) the time for MD to process the message
from DC and generate the message to send to DC; (4) the
transmission time for the message from MD to DC; (5) the
time for DC to process the message from MD. In all of our
experiments, we use DH keys of 1024 bits, RSA keys of 3072
bits and AES keys of 256 bits. Multi-threading is used when
DC communicates with multiple MDs to take advantage of the
parallelization. The time for multiple MDs is the total time
consumption to finish all the threads.

128 512 2048 8192 32768
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Data Size (bytes)

T
o

ta
l
T

im
e

 (µ
s
)

Fig. 4. Time for Data Collection
with 1 MD.

128
512

2048
8192

32768

0

5

10

15
0

0.5

1

1.5

2

x 10
6

Data Size (bytes)Number of MDs

T
o

ta
l
T

im
e

 (µ
s
)

Fig. 5. Time for Data Collection
with Different Data Sizes and number
of MDs.

Fig. 4 shows the total time for data collection versus
different data sizes when one DC collects data from one MD.
As expected intuitively, larger data takes longer to collect.
Fig. 5 plots the total time for data collection by one DC under
varying data size and number of MDs. With even a small
number of MDs, this shows that a high degree of coordination

is needed to timely collect data when the number of MDs
becomes very large. In this respect, association of MDs with
DCs emerge as a critical problem, which we will be studying
as part of our future work. Another aspect of the results rises
about the frequency of the data collection. For high-frequency
data collection, the volume of data becomes large, deserving
a meticulous attention.

VII. CONCLUSION

Data collection from smart meters, sensors, and measure-
ment devices is a critical component for delivering the desir-
able promises of the Smart Grid. Vastly increased data gen-
eration, monitoring, and processing capabilities in the Smart
Grid are calling for equivalently high impact mechanisms
to ensure the security while preserving the reliability and
scalability. Automation becomes inevitable and contribution
of the Machine-to-Machine communications manifests itself
clearly. In this paper, we present a comprehensive and secure
communications protocol to enable a power operator to collect
data from measurement devices in a practical, scalable, and
efficient manner under a hierarchical data collection model
where intermediary devices relay data from measurement
devices on behalf of the power operator securely without
access to it. Our protocol paves the way for third party
service provisioning, as envisioned by the NIST Smart Grid
Framework. Examples of such third party services include
outsourcing data collection by 3rd party DCs, utilizing cloud
computing services for data storage and processing, etc. We
have also developed a testbed of Raspberry Pi devices to
mimic the resource-constrained measurement devices and fully
deployed our protocol on them. Preliminary results from this
testbed indicate that small message size and small group of
MDs yield very low time for secure data collection.

VIII. ACKNOWLEDGMENT AND DISCLAIMER

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000097.

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] N. Kayastha, D. Niyato, E. Hossain, and Z. Han, “Smart grid sensor
data collection, communication, and networking: a tutorial,” Wireless
Communications and Mobile Computing, pp. n/a–n/a, 2012.

[2] B. Karimi, V. Namboodiri, and M. Jadliwala, “On the scalable collection
of metering data in smart grids through message concatenation,” in Proc.
of IEEE SmartGridComm, 2013.

[3] C. Rottondi, G. Verticale, and C. Krauss, “Distributed privacy-preserving
aggregation of metering data in smart grids,” IEEE JSAC, vol. 31, no. 7,
pp. 1342–1354, July 2013.

[4] National Institute of Standards and Technology. (2013, October) NIST
Framework and Roadmap for Smart Grid Interoperability Standards,
Release 3.0. Smart Grid Interoperability Panel (SGIP).

[5] S. Bera, S. Misra, and J. Rodrigues, “Cloud computing applications for
smart grid: A survey,” IEEE Tran. on Par. and Dist. Sys., no. 99, 2014.

[6] X. Fang, S. Misra, G. Xue, and D. Yang, “Managing smart grid infor-
mation in the cloud: opportunities, model, and applications,” Network,
IEEE, vol. 26, no. 4, pp. 32–38, July 2012.

[7] R. Tabassum, K. Nahrstedt, E. Rogers, and K.-S. Lui, “Scapach: Scalable
password-changing protocol for smart grid device authentication,” in
IEEE ICCCN, July 2013, pp. 1–5.

[8] Z. Fadlullah, M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and
Y. Nozaki, “Toward intelligent machine-to-machine communications in
smart grid,” IEEE Comm. Mag., vol. 49, no. 4, pp. 60–65, April 2011.

[9] Jesus Alonso-Zarate, Javier Matamoros, David Gregoratti, and Mischa
Dohler, “Machine-to-machine communications in smart grid,” in Smart
Grid Communications and Networking, E. Hossain, Z. Han, and H. Poor,
Eds. Cambridge University Press, 2012, Ch.6.

[10] J. Liu, Y. Xiao, S. Li, W. Liang, and C. Chen, “Cyber security and
privacy issues in smart grids,” IEEE Communications Surveys and
Tutorials, vol. 14, no. 4, Fourth Quarter 2012.

[11] RFC 5246, “The transport layer security (tls) protocol version 1.2,” 2008.
[12] IEEE 1815-2012, “Dnp3 secure authentication version 5,” 2011.
[13] International Electrotechnical Commission’s (IEC) Technical Committee

57 (TC57). IEC 61850, Power Utility Automation .
[14] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and

challenges,” Computer Networks, vol. 57, no. 5, pp. 1344 – 1371, 2013.
[15] X. Long, D. Tipper, and Y. Qian, “An advanced key management

scheme for secure smart grid communications,” in Proc. of IEEE
SmartGridComm, 2013.

[16] N. Liu, J. Chen, L. Zhu, J. Zhang, and Y. He, “A key management
scheme for secure communications of advanced metering infrastructure
in smart grid,” IEEE Tran. on Ind. Electr., vol. 60, no. 10, 2013.

[17] D. Wu and C. Zhou, “Fault-tolerant and scalable key management for
smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 2, June 2011.

[18] Y. Law, G. Kounga, and A. Lo, “WAKE: Key management scheme for
wide-area measurement systems in smart grid,” IEEE Comm. Mag., Jan.
2013.

[19] M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, and X. Shen, “A
lightweight message authentication scheme for smart grid communica-
tions,” IEEE Trans. on Smart Grid, vol. 2, no. 4, Dec. 2011.

[20] C. Bekara, T. Luckenbach, and K. Bekara, “A privacy preserving and
secure authentication protocol for the advanced metering infrastructure
with non-repudiation service,” in Proc. of ENERGY, 2012.

[21] Y.-J. Kim, V. Kolesnikov, H. Kim, and M. Thottan, “SSTP: a scalable
and secure transport protocol for smart grid data collection,” in Proc. of
IEEE SmartGridComm, 2011.

[22] J. Hur, “Attribute-based secure data sharing with hidden policies in smart
grid,” IEEE Tran. on Par. & Dist. Sys., vol. 24, no. 11, 2013.

[23] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins:
Security protocols for sensor networks,” Wirel. Netw., vol. 8, no. 5, pp.
521–534, Sep. 2002.

[24] G. Dan, K.-S. Lui, R. Tabassum, Q. Zhu, and K. Nahrstedt, “Selinda:
A secure, scalable and light-weight data collection protocol for smart
grids,” in IEEE SmartGridComm, Oct 2013, pp. 480–485.

[25] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “Pda:
Privacy-preserving data aggregation in wireless sensor networks,” in
IEEE INFOCOM 2007, May 2007, pp. 2045–2053.

[26] T. Feng, C. Wang, W. Zhang, and L. Ruan, “Confidentiality protection
for distributed sensor data aggregation,” in IEEE INFOCOM, April 2008.

[27] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggrega-
tion for the smart-grid,” in Privacy Enhancing Technologies. Springer,
2011, vol. 6794, pp. 175–191.

[28] W. Diffie, P. Oorschot, and M. Wiener, “Authentication and authenticated
key exchanges,” Designs, Codes and Cryptography, vol. 2, no. 2, pp.
107–125, 1992.

