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Abstract—Knowledge of where vehicles will be in near future
helps users in daily planning, traffic monitors in vehicles schedul-
ing, advertisers in fixed point advertising, and especially helps in
communication network source provisioning. In this paper, we
analyze the predictability of taxi mobility based on their locations
and time period records and we present a prediction method
of taxis for their next locations in 15 seconds using Markov
predictor. The historical location trace of each taxi is used to
train the transition probability matrix of next location for our
predictor, and we use 3 different scenarios to predict. Based on
records from over 2,000 taxis in Shanghai, and over 14,000 taxis
in Beijing, we are able to predict the next vehicular location with
an accuracy of 82%.

Index Terms—vehicular network, mobility prediction, Markov
chain

I. INTRODUCTION

With the ever-increasing vehicles on the roads and the
arising concept of Ambient Intelligence’s smart city, vehicular
networks that enable wireless communications for vehicles
to obtain content from Internet resources or transfer mobile
data in them have become increasingly important. Large-scale
vehicular cellular access is expected to be available with
an increasing number of vehicles equipped with devices to
support communication in vehicular network, and interests on
vehicular communication networks have grown significantly.
Governmental and industrial dedications have been made, for
example, in the USA, Federal Communications Commission
(FCC) has allocated 75 MHz in spectrum for dedicated near-
field vehicular communications, and IEEE is also drafting
related standard description. Many consortia and standardisa-
tion bodies are actively developing technologies and protocols
for information transmission between vehicles and Roadside
Unit (RSU) infrastructure equipments, known as Vehicles to
Infrastructures (V2I), and between vehicles, known as Vehicles
to Vehicles (V2V).In such vehicular networks, a lot of smart
applications based on real-time traffic information, such as taxi
scheduling, traffic avoidance, touring guidance, and accident
administration, become possible.

However, there are many challenges remaining before future
driver assistance systems can effectively offer excellent service
on vehicle’s communication and support traffic situation inter-
pretation, such as the road crossing scenario [1]. One of the
most difficult challenges is the vehicular mobility prediction.

In terms of the transportation system itself, if the present
taxis’ states and their prediction of future locations are known,
better journey planning and scheduling can be completed. For
example, a tourist who arrives at transit airport and plans
to have a trip inside the transit city with time limitation
such as 8-hour visa in Dubai, will enjoy benefits from the
prediction service to arrange taxi rides in series of places
around the city. This is one of the various applications in smart
transportation. The main problem here is how to handle the
vehicular dynamic within the capacity of existing road system
by predicting and guiding the vehicular traffic. Besides, in
terms of the mobile service provisioning, clients’ mobility,
especially when they are in vehicular networks causes obvious
service loss during handover. Time-continuous services such
as audio/video streaming suffer from temporary connection
drop during clients handover from one access locality to
another one, which is very common in vehicular networks
as all the users as well as part of service providers are
moving. Therefore, effective and accurate real-time predictions
of vehicular mobility are needed. On the other hand, in terms
of designing vehicular networks, mobility on communication
that is specific to vehicular is gradually explicitly taking into
account in research efforts on the development of communi-
cation protocols and mobility models of vehicular networks.
Thus, we need to better predict vehicular mobility to increase
the efficiency of communication in vehicular networks.

At present, the importance of mobility prediction in ve-
hicular networks has received wide acknowledgment in the
thesis [2]–[4]. However, most of current prediction works
focuse on human mobility [5], [6]. In these works, mobility
patterns and prediction limit of human beings are studied.
Examples include using Markov chain predictor to study the
individual behavior for the purpose of improving the service
provisioning in WLAN [7]. Although the concept of predicting
the next location based on the previously visited locations is
widely used in individual vehicular mobility estimation and
network handoff patterns evaluation, the prediction limits are
not explicitly explained and remain unknown. Moreover, there
is no work about vehicular network predictability limits and
prediction verification on large-scale vehicular mobility data
to analyze the performance in real urban scenarios.

In this paper, we use two groups of one-month real taxis
mobility traces from Beijing and Shanghai, two of the biggest
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cities in China, which include over 14,000 taxis in Beijing and
2,000 taxis in Shanghai. With our preprocess on the original
data, the mobility trace denotes associated history of each
vehicle by the cell number in the network under a simple
mobility model assumption. Based on this model, we propose
a two-stage Markov process based mobility prediction algo-
rithm. We use the designed Markov predictor under 3 different
time scales to predict the future locations. The results show
that when we use comparatively small number of historical
trace records, such as 5,000, to train Markov predictor, the
prediction accuracy decreases to 70%. However, when we
only use 2,000 previous records to train Marcov predictor
the prediction accuracy does not decrease significantly and
remains 65%. These obtained results from real large-scale data
prediction demonstrate that our proposed algorithm are very
near to the limit if we use historical traces to predict.

The rest of the paper is organized as follows. After pre-
senting the related work in Section II, we explain about our
vehicular mobility traces in Section III, and give the system
models for the vehicular location prediction in Section IV.
In Section V, we provide the method to obtain the vehic-
ular mobility prediction limitation, and design a Markov-
based prediction algorithm that tries to achieve the obtained
prediction limitation. Section VI introduces the experimental
environments for performance evaluation and presents the
simulation results of different prediction considerations. We
conclude the paper in Section VII.

II. RELATED WORK

In recent years, with wide deployment of pervasive tech-
nologies associated with location and time points, a huge
increase of people’s footprints records has been produced.
These digital records of human’s individual mobility pattern
have motivated an increasing interest on researches in human
mobility such as prediction of human mobility [4], event-
driven traveling pattern [8]. Different from our work they focus
on the mobility of human beings rather than moving vehicles.

GPS-capacitated vehicle moving data such as taxi traces,
access point records have been collected to analyze rules
behind them. In the work of John Krumm [9] a method called
Predestination which uses a history of a driver’s destinations
was developed based on data collected from 169 distinct
subjects who drove 7,335 trips. Huang et al. [10] explored
the feasibility of vehicle future trajectory prediction in their
experimental results where sufficient accuracy for application
was achieved. Sebastien et al. developed the MMC algorithm
to address the issue of predicting the next location of an
individual based on the observation of his mobility behavior
over some period of time and the recent locations that he has
visited. Their work are usually based on a small amount of
data and they lack analysis of the moving patterns in vehicular
networks.

III. TRACE INTRODUCTION AND PRE-PROCESSING

We first introduce two large-scale urban vehicular mobility
motion traces, which play a crucial role in motivating our

work. They were collected separately in Shanghai and Beijing.
Firstly, we give a brief description of them.

Shanghai trace was collected by SG project [11], in which
2,058 operational taxis continuously covered the whole month
of February 2007 without an interruptions in Shanghai city.
In this trace, a taxi sends its position reported by GPRS to
the central database every 1 minute when it is vacant and
every 15 seconds when it has passengers for the aim of real-
time scheduling. However the relatively small number of 2,000
taxis and 1 minute duration may not be sufficient to record
the statistical features of mobility in a large high-speed urban
environment. Furthermore, the different reporting frequency
may distort the records of the physical movements of the taxis.

As for Beijing trace [12], 27,000 taxis participated in the
data collection carrying GPS receivers during May 2010.
The reason we choose taxis as vehicular devices lies in that
taxis have more sensitive reflections to changes in urban
environments in terms of traffic control and urban planning
and underlying road topology, and they have broader coverage
of operation time and space compared with buses and private
cars. The specific information contained in the every 15-
seconds report from taxis to data center includes: taxis’ ID,
longitude and latitude coordinates of the taxi’s locations, as
well as time stamps. Beijing trace is the largest vehicular data
trace available.

We obtain the taxis’ moving trace and their moving varia-
tion from the longitude and latitude coordinates. Since these
locations are measured by GPS devices, the noise may impact
the accuracy of the location. Furthermore, coordinates are not
suitable to grasp the movement rule of vehicles as the time
intervals and report frequency to report locations are not the
same for the traces. Thus we need to process the data trace
to obtain the accurate locations of all the taxis. To achieve
this goal, we first use the city maps of Shanghai and Beijing
for the respective traces to correct the taxi’s locations so that
they are in the regions of related city roads. Secondly, we
use linear interpolation (LI) to insert location points so that
all the taxis have location information at every 15-second
interval. Give a simple example of this method, consider that
we have the location of one taxi in the original trace with the
location l1, l2, ..., ln recorded at the time points t1 < t2 < ˙̇<̇t3.
If we want to insert the location information of cell ct at
the time point t which is calculated according to the 15-
second frequency. We need to find the time period where
tn ≤ t < tn+1 and then estimate the location of cell lt by
the following LI

lt =
tn+1 − t

tn+1 − tn
ln +

t− tn
tn+1 − tn

ln+1.

To differentiate the location of taxis the whole map is
divided into different cells according to the road crossing. In
our processing, crossings are regarded as points. Consider a
set of coplanar points P . For each point Px in the set P ,
we can draw a boundary which encloses all the points lying
closer to Px than to other points in the set P . The parameter
seq which ranges from 0.1 to 0.9, decides how big one cell is.
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Fig. 1. The method to divide map into different cells

The smaller the seq is, the larger the cell is. To illustrate this
method we use a figure (FIG. 1) in which the map is divided
into different cells according to a set of points. With the help
of LI, the accurate time point when the vehicle enters another
cell is known.

IV. MODEL

Before we describe the predictor, we first give an overview
of envisions about the vehicles, the data available, and the
system for training and predicting. We assume a wireless
network where the vehicles are regarded as different nodes
traveling from cell to cell. Every node has a device to record
its coordinates at any time, as well as its cell number. Besides
there is a centralized mechanism to collect the history of every
node and perform predictors. Therefore, the trajectory of the
vehicles is denoted by a sequence of cell numbers, which
together form an abstract model for prediction calculation.

V. PREDICTION METHODOLOGY

We use Markov predictor to predict the destination of
the vehicles. The predictor uses transition probability matrix
trained from each user’s historical or whole trajectory to give
prediction with given most recent location sequence. The
order-k or O(k) Markov predictor uses a sequence of symbols
(s1, s2, ..., sn) as history record to predict the next symbol
sn+1 from current context, in other words, the sequence of the
k most recent symbols in the history (s1, s2, ..., sn). Assume
history H=s1s2...sn and subsequence H (i, j)=sisi+1...sj for
any 1 ≤ i ≤ j ≤ n. As there are explicit states representing the
locations of taxis, a multi-dimensional transition probability
matrix M(Y (i, j), s) encloses all the predicting information.
Consider Y to be a random variable symbol and Y (i, j) to
be a sequence representing discrete random variates sequence
YiYi + 1...Yj for any 1 ≤ i ≤ j ≤ n. Define the context
c = H(n−k+1, n). Let S be the set of all possible symbols.
If Y has order-k stationary Markov distribution, for all s ∈ S

Algorithm 1 Predicability Evaluation.
Initial the Node Number and Node records
for Node Number i do

Denote Ti=trace of i
for Trace Ti do

if Trace sequence Ti
′ has appeared then

Add the destination to this sequence class;
else

Add a new sequence class to sequence counter
end if

end for
for Ti do

Predict the next destination cell according to the pre-
vious 2 steps of trajectory, T2

′ and use the most
frequently appear cell number as the predict cell
Check the prediction accuracy

end for
Erand

i = log2Ni,

Eunc
i = −

Ni∑
j=1

pi(j)log2pi(j),

Ei = − ∑
Ti
′⊂Ti

P (Ti
′)log2[P (Ti

′)]

solve Πmax where E = H(Πmax)+(1−Πmax)log2(N−
1)

end for

and i ∈ 1, ...n− k, its distribution satisfies

P (Yn+1 = s|Y (1, n) = H)
= P (Yn+1 = s|Y (n− k + 1, n) = c)
= P (Yi+k+1 = s|Y (i + 1, i + k) = c)

Then we can estimate the MY (i,j),s in transition probability
matrix to s as P (Yn+1 = s|H) ≈ P̂ (Yn+1 = s|H) = N(cs,H)

N(c,H)

where N(t′, s) denotes the number of times the subsequence
t′ occurs in the sequence t . The markov predictor returns the
most possible next symbol as :

Yn+1 = arg max
s∈S

(P (Yn+1 = s))

Moreover,we define the O(k) fall-back Markov predictor.
Whenever the O(k) predictor doesn’t have enough information
to predict, namely when the current context has never appeared
before, O(k) falls back to O(k − 1) Markov predictor. As
a result we specially define the “order-0” Markov predictor,
which always returns the symbol that occurs most frequently
in history H . The early work of [13] shows that O(2) Markov
with fall-back performed the best. In the transition probability
matrix, 0 stands for sequences or next symbols that never
appear. In addition we use the parameter history length to
decide how long the training history is when a predictor is
requested, and this stands for the jitter of the behavior of
vehicles.

VI. PERFORMANCE EVALUATION

Meaningful performance evaluation metrics are essential
requirements for proper estimation description. In many ap-
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plication based experiments, application-specific metrics are
naturally regarded as the evaluation metrics. However, the
metrics were affected by many factors other than prediction
accuracy, such as channel reservation policy in a cell phone
communication application. Thus application metrics were not
able to provide direct insight into predictor’s quality. We
develop the accuracy of the prediction as the main metric to
evaluate the performance of predictor at location prediction.
We define the ratio between the number of correct predictions
and the number of all predictions as the accuracy metric. In
the first scenario the prediction process starts from the first
location of cell to the last location of cell in the trace, the
prediction process lasts during the whole lifetime of the traces
of vehicles, which is referred to “all information prediction”.
In the second scenario, only 2,000 most recent sequence
is used to train the predicting result, which is referred to
“simplified quick prediction”. In the last scenario, all the
history record of one node is used to train the prediction of
next cell, which is referred to as “history based prediction”.

For prediction performance evaluation, the accuracy of each
taxi under 3 scenarios are shown in the following figures
(FIG. 2, FIG. 3 where the seq = 0.1, 0.3, 0.5 separately.
From the real large-scale data, we can see in both Beijing and
Shanghai dataset the third scenario has the highest prediction
accuracy which peaks at about 0.7; the first scenario, has the
second highest prediction accuracy which peaks at about 0.65;
the second scenario, also referred to as “simplified prediction”
has the worst prediction results, peaking at about 0.48, because
in this scenario we sacrifice accuracy for predicting speed.
To our surprise, the “history based prediction” has better
accuracy than “all information prediction”, it is against our
intuitive conjecture. We find the main difference between
the two scenarios appears at the beginning period of the
predicting process, because when at the later period we get
most of the all information as the history records, the two
scenarios are approximately very similar. However, at the
beginning, “history based prediction” has less information but
more related to the beginning period, while “all information
prediction” has more information but in term with this period
it brings more noise. That’s why more information may not
result in higher accuracy. In addition, the results agrees with
the economic assumption that the drivers want to spend the
least time when taxi is vacant and usually drive passengers
around a certain area, which means that their behavior is of
more predictability. To be more specific, the drivers may drive
in one section for some days and gradually move to another
section as passengers they drive want to go to. On the other
hand, the taxis also face passengers who want to have a long
ride to another distant place, in this situation the predictability
of the next cell is much smaller.

The results obtained from Beijing traces are shown in
Fig. 2. There is an obvious trend that the bigger the seq is
the bigger point the P (Accuracy) under 3 scenarios peaks
at. The P (Accuracy) for history based prediction peaks at
0.74(seq = 0.1), 0.81(seq = 0.3) and 0.82(seq = 0.5).
Contrary to our conjecture, if we divide the map into more
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(b) seq=0.3
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(b) seq=0.5

Fig. 2. Distributions of prediction accuracy under 3 scenarios with Beijing
dataset when seq is different.

parts, the prediction accuracy increase, which reflects the deep
predictability movement pattern in taxi behavior.

The results obtained from Shanghai are shown in Fig. 3.
Different from the those results in Beijing, the prediction
accuracy in 3 scenarios of Shanghai are more aggregate, as
the “all information prediction” peaks at 0.64, the “simpli-
fied quick prediction” peaks at 0.57, and the “history based
prediction” peaks at 0.67 when seq = 0.1. Similar to the
results in Beijing, the seq and the prediction accuracy have
some inner relationship, that the bigger the seq the higher the
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(b) seq=0.3
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Fig. 3. Distributions of prediction accuracy under 3 scenarios with Shanghai
dataset when seq is different.

prediction accuracy. The highest prediction accuracy appears
when seq = 0.5 under history based prediction with the
accuracy of 77%.

To summarize, the results consistently show that a deep-
rooted regularity behind vehicles’ daily mobility. The predic-
tion accuracy results in real large scale urban city dataset range
from 57% to 82%.

VII. CONCLUSION

This paper explores the feasibility of vehicular network
mobility prediction and the predictability of its movement

behavior. The Markov predicting algorithm for next cell pre-
diction based on previous movement records is proposed; and
the prediction based on large-scale taxi dataset is studied. The
prediction accuracy in 2 city Beijing and Shanghai ranges from
0.56 to 0.82 under 3 different scenarios: “all information”,
“simplified quick” and “history based”. In order to further
understand the mobility pattern in vehicular networks, we are
planning as future work to analyze the behavior pattern of taxi
drivers searching for possible passengers in large scale data.
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