
EDMAND: Edge-Based Multi-Level Anomaly

Detection for SCADA Networks

Wenyu Ren∗, Timothy Yardley∗ and Klara Nahrstedt∗

∗ University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Email: {wren3, yardley, klara}@illinois.edu

Abstract—Supervisory Control and Data Acquisition (SCADA)
systems play a critical role in the operation of large-scale
distributed industrial systems. There are many vulnerabilities in
SCADA systems and inadvertent events or malicious attacks from
outside as well as inside could lead to catastrophic consequences.
Network-based intrusion detection is a preferred approach to
provide security analysis for SCADA systems due to its less
intrusive nature. Data in SCADA network traffic can be gen-
erally divided into transport, operation, and content levels. Most
existing solutions only focus on monitoring and event detection of
one or two levels of data, which is not enough to detect and reason
about attacks in all three levels. In this paper, we develop a novel
edge-based multi-level anomaly detection framework for SCADA
networks named EDMAND. EDMAND monitors all three levels
of network traffic data and applies appropriate anomaly detection
methods based on the distinct characteristics of data. Alerts are
generated, aggregated, prioritized before sent back to control
centers. A prototype of the framework is built to evaluate the
detection ability and time overhead of it.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) sys-

tems are industrial control systems (ICSs) used for real-

time monitoring, data collection, and control for large-scale

distributed critical infrastructure systems such as power grids,

oil/gas pipelines and refineries, water distribution and treat-

ment. SCADA systems play a critical role in the operation

of industrial systems by collecting data from fields sensors

located at remote sites and issuing commands to actuators

for control purpose. Communication protocols are developed

specifically for ICSs like SCADA systems and some of the

most commonly used ICS protocols include Modbus (for

oil/gas refineries), and DNP3 (for power utilities) [1].

Critical as they are, SCADA systems are subject to a wide

range of serious threats in recent years and they could suffer

from catastrophic consequences due to successful attacks.

Well-known malicious cybersecurity incidents in SCADA sys-

tems include the Stuxnet worm attack [2] and the BlackEnergy

malware [3]. These attacks exploited the vulnerabilities of

SCADA systems and the situation is expected to deteriorate

further for several reasons. First, the adoption of cutting-

edge communication technologies contributes to the increasing

complexity and interconnection of SCADA systems, which

potentially provides greater opportunity for attacks from ma-

licious sources. Since corporate intranets can be connected

to the internet, SCADA systems connections with corporate

intranets may expose their communication weakness to threats

of broader aspects. Second, devices in SCADA systems are

usually not built with cybersecurity in consideration and lack

authentication or encryption mechanisms. To make things

worse, the enabling of remote access to these devices via

wireless technologies makes them easy to compromise. Third,

most ICS protocols lack authentication features and provide

no protection for the network traffic. The vulnerabilities of

SCADA systems can be exploited from both outside by mali-

cious attackers and inside by disgruntled employees. Besides

deliberate attacks, inadvertent events such as natural disasters,

device failures, and operator mistakes may also jeopardize

SCADA systems due to those vulnerabilities. Therefore, de-

veloping techniques to target those vulnerabilities and provide

security to SCADA systems is a pertinent topic of particular

importance.

In general, two types of analysis are available to provide

security for SCADA systems: host-based and network-based.

We focus on network-based analysis which monitors and

inspects network traffic due to its less intrusive nature. Based

on different analysis granularity, data in SCADA network

traffic generally can be divided into three levels: transport

level, operation level, and content level. Transport level data

refers to statistics in IP headers and transport protocol headers.

Operation level data refers to operation statistics in ICS

protocols. Content level data refers to measurement statistics

from field devices. Among all network-based security analysis

approaches for SCADA systems, most existing solutions only

focus on monitoring and event detection of one or two levels

of data, which is not enough to detect and reason about

attacks in all three levels. Also, data in each level has its own

characteristics, which requires distinct methods to deal with.

In this paper, we develop an edge-based multi-level anomaly

detection framework for SCADA networks, named EDMAND.

EDMAND is located inside the remote substations, which are

the edges of the SCADA network. It contains a multi-level

anomaly detector to monitor all three levels of network traffic

data passing by. Appropriate anomaly detection methods are

applied based on the distinct characteristics of data in various

levels and alerts are generated, aggregated, prioritized, and

sent back to control centers when anomalies are detected.

The remainder of this paper is organized as follows: Section

II reviews the related work. Section III introduces the net-

work architecture of SCADA systems and two of our design

decisions. Section IV gives an overview of the design of

EDMAND. Section V shows the performance evaluation of

EDMAND and Section VI concludes the paper.

II. RELATED WORK

As we mentioned in the previous section, SCADA network

traffic data can be categorized into three levels but most

existing network-based intrusion detection only take one or

two levels into consideration. [4], [5] focus on flow-level data

while [6]–[10] analyze ICS protocol functions. [11], [12] only

concentrate on content-level and [13], [14] cover the flow and

operation levels. None of these approaches analyze all three

levels of data and therefore may fail to detect anomalies in

levels not covered. Moreover, a sophisticated multi-step attack

may introduce anomalies in multiple levels of traffic data. The

whole picture of the attack can be seen only when all three

levels of anomalies are detected.

The most similar work to ours is [15]. The authors develop

a multiattribute SCADA-specific intrusion detection system.

The system uses white lists and behavior-based rules to

analyze multiple attributes in transport, operation, and content

levels to mitigate various cyberattacks. However, without any

method to filter and prioritize alerts, the operator can easily

be overwhelmed by false positives or low-priority alerts and

miss the high-priority ones. Also, in our framework, alerts in

on one level will affect the alert triggering in the other two

levels, which is helpful in reducing false alerts.

III. NETWORK ARCHITECTURE AND DESIGN DECISION

In this section, we introduce the SCADA network archi-

tecture. Then we explain two important design decisions we

made for the framework.

A. Network Architecture

A simplified architecture of SCADA network is shown in

Figure 1. The major components in SCADA network include

the Master Terminal Units (MTUs) in the control centers,

remote devices in the substations and the communication

network that connects them. The remote devices can be Re-

mote Terminal Units (RTUs), Programmable Logic Controllers

(PLCs), or Intelligent Electronic Devices (IEDs), which further

connect to and receive measurements from field devices such

as sensors or actuators. The MTU in the control center queries

the remote devices for system updates and may also issue

control commands to them to change the control strategy. To

avoid further data collection time and achieve prompt anomaly

detection, we deploy EDMAND at the edge of the SCADA

network. To be more specific, EDMAND is deployed in each

substation between the remote devices and the wide area

network. EDMAND monitors all traffic passing by and sends

alerts back to control centers when anomalies are detected.

B. Design Decision

We made two important decisions while designing our

framework. The first one is to divide traffic data into multiple

levels and apply appropriate anomaly detection mechanisms

to data in each level based on their characteristics. As we

mentioned previously, data in SCADA traffic can be divided

into three levels: transport level, operation level, and content

level. Data in each level have their own characteristics, which

Fig. 1. SCADA network architecture

Fig. 2. EDMAND architecture

is taken into consideration when we select anomaly detection

mechanisms for each level.

The second design decision is to introduce the concept

of confidence into the anomaly detection process and assign

confidence scores to generated alerts. We define an alert’s

confidence score CS ∈ [0, 1] to be the confidence that the

alert is indeed an anomaly. We calculate the confidence score

by CS = MA × AS, where MA is the model accuracy and

AS is the anomaly score. The model accuracy measures the

accuracy of our anomaly detection model in describing normal

behavior and serves as the weight of the anomaly score. We

assume that the majority of traffic data is normal data and

therefore we can build models with higher accuracy as more

samples are observed. In this sense, we estimate the model

accuracy by a modified sigmoid function of observed sample

number as MA = 2/(1+e−n/N)−1, where n is the observed

sample number by the model and N = 100 is a normalization

factor. The anomaly score measures how far the current sample

deviates from the normal behavior described by the model.

Different methods are used to calculate the anomaly score for

different data and they are introduced in the next section.

IV. FRAMEWORK DESIGN

In this section, we present an overview of the modular

design of EDMAND. As it is shown in Figure 2, EDMAND

consists of 3 main components: (1)Data Extractor, (2)Anomaly

Detector, (3)Alert Manager. The data extractor is implemented

utilizing a network security monitor called Bro [16]. The data

extractor monitors the network traffic passing by and forwards

all three levels of network traffic data to the anomaly detector.

The anomaly detector contains three levels and each level uses

appropriate method to detect anomalies and generates alerts.

After that, the alert manager aggregates similar alerts into

meta-alerts. Priorities are given to meta-alerts and the alert

manager reports meta-alerts to the control center with various

frequencies according to their priorities. The anomaly detector

and the alert manager will be described in more detail in the

following two subsections.

Fig. 3. Multi-level anomaly detector structure

A. Anomaly Detector

The structure of the multi-level anomaly detector is shown

in Figure 3. There is a listener which receives Bro data from

the data extractor and feeds them to the three modules for three

levels. In each module, there is a parser that parses the Bro

data corresponding to that level and translates them to standard

input data for the processor. The processors implement vari-

ous anomaly detection mechanisms to detect anomalies and

generate alerts. We will introduce the three modules for three

levels of data respectively.

1) Transport-Level Module: In the transport-level module,

two kinds of analysis at different time scales are applied. A

packet processor analyzes each packet for short-term analysis.

A flow aggregator aggregates packet statistics every period

Tflow = 10min and forwards to a flow processor for long-

term analysis.

The input data to both processors consists of two kinds

of fields: the index field which describes the packet or flow

related with the input data, and data fields which store statistics

for anomaly detection. As it is listed in Table I, the index fields

for both processors share the same structure, which is a 4-tuple

including originator(IP), responder(IP), transport protocol, and

port number. The packet processor has interarrival time IAT
and packet size PS as its data fields and the flow processor

has packet count PC and average packet size APS as its data

fields. Each type of data field has two values, corresponding

to statistics of traffic in both directions.
TABLE I

INPUT FIELDS AND ANOMALY DETECTION MECHANISM OF PACKET

PROCESSOR AND FLOW PROCESSOR

Packet Processor Flow Processor

Index Field (originator, responder, transport protocol, port number)

Data Field
interarrival time (IAT) packet count (PC)

packet size (PS) average packet size (APS)

Mechanism 1D-DenStream Mean-STD

There are two types of anomalies for these two processors.

The first type happens when input data with new index field

are seen and the anomaly score is set to 1 in this scenario.

The second type is abnormal value in data fields and we use

various anomaly detection mechanisms to detect anomalies of

this type. We mentioned previously that one of the design

decision we made is to apply appropriate method to data

with different characteristics. Since packet statistics and flow

statistics follow quite different distributions, different anomaly

detection mechanisms are utilized for the packet processor

and flow processor. On the one hand, since traffic in SCADA

usually follows periodic patterns [17]–[20], the packet count

PC and average packet size APS in a certain period usually

follows a unimodal distribution as long as the period is

selected properly. Therefore, the mean and standard deviation

are good enough to characterize these data fields. We build

models for these data fields by calculating the exponentially-

weighted mean and standard deviation. The anomaly score AS
is calculated as the square of the anomaly score we used in

[21] as

AS(X,µ, σ) =







(

1− σ2

|X−µ|2

)2

if |X − µ| > σ

0 otherwise
, (1)

where µ and σ are the mean and standard deviation stored in

the model and X is the data field value of the current input

(i.e., PC or APS for the flow processor). For convenience,

we call this anomaly detection mechanism Mean-STD in the

rest of this paper. On the other hand, the interarrival time

IAT and the packet size PS of each packet usually follow

multimodal distributions. Consider the following scenario, the

control center is sending periodic read requests to a remote

device. Each request is followed by a response from the

remote device and then a confirmation from the control center.

For packets from the control center to the remote device,

read requests and confirmations could have big difference in

packet size PS but both are considered as normal packets.

For this reason, the mean and standard deviation may not

be able to characterize these data fields and we utilize a

clustering method instead. We use a modified 1D version of

the DenStream in [22]. DenStream is an approach to cluster

data in an evolving data stream and data is clustered into

potential core-micro-clusters and outlier micro-clusters. An

alert is generated whenever the new value point is added to

an outlier micro-cluster and the anomaly score is calculated

as AS(w, µ, β) = 1 − (w − 1)/(βµ − 1), where µ and β
are predefined parameters and w is the weight of the outlier

micro-cluster.

2) Operation-Level Module: The objective of the operation-

level module of the anomaly detector is to detect anomalies

in operations (e.g., requests and responses) of ICS protocols

such as Modbus and DNP3. Similarly, the input data of the

operation processor have an index field and a data field. We

use a 5-tuple of (originator(IP), responder(IP), ICS protocol,

unit id, function code) as the index field and interarrival time

IAT as the data field. Here unit id is a ICS protocol specific

address which is used to differential devices that share the

same IP address. Notice that the IAT in operation level is

different from the IAT in transport level. In operation level,

the IAT is the difference in timestamps of two consecutive

same operations between one pair of nodes (i.e., the two

operations share the same index field). In transport level,

the IAT is the difference in timestamps of two consecutive

packets of the same direction between one pair of nodes

which could be different operations or even non-ICS-protocol

packets.

As it is shown in Table II, there are mainly three types

of anomalies in this level. The first type includes invalid

function code and wrong direction of operation. In normal

status, requests should only be sent by the control center and

received by remote devices and responses should be sent by

remote devices and received by the control center. Wrong

direction here stands for unexpected scenarios such as requests

initiated by remote devices or responses sent by the control

center. For an anomaly of the first type, an alert is generated

directly and a confidence scores of 1 is assigned. The second

type of anomaly is the emerging of new operation, which is

identified when input with new field index is observed. In

this case, an anomaly score of 1 is given. The third type

of anomalies includes scenarios of periodic operation arriving

too early, arriving too late, or disappearing. In SCADA, the

IAT of the same operation follows a unimodal distribution

since operations are usually periodic. Therefore, the Mean-

STD mechanism is used for anomaly detection and AS is

calculated by equation 1 where X is replaced by IAT in

operation level.
TABLE II

ANOMALY AND DETECTION MECHANISM IN OPERATION LEVEL

Anomaly Mechanism

invalid function code
CS=1

wrong direction of operation

new operation AS=1

early operation
Mean-STDlate operation

missing operation

3) Content-Level Module: The content-level module of the

anomaly detector is responsible for detecting anomalies in

measurement values such as frequencies and voltages which

are included in responses to read requests. The input data

of the content processor have a 5-tuple of (measure source

(IP), ICS protocol, unit id, measurement type, measurement

index) as the index field and the measurement value itself as

the data field. Depending on the measurement type, different

methods are applied for anomaly detection. Let us take DNP3

for example, where the three measurement types are Binary,

Analog, and Counter. Here we will discuss the first two which

are most commonly seen.

For the Binary measurement type, the intuition behind the

detection method is that a binary variable can only take two

values (i.e., 0 or 1) and always one of them is normal and the

other is abnormal. Therefore, we can try to identify the normal

value by simply counting the 0s and 1s in observed samples.

The normal value is 0 if the majority of the observed values

are 0s and vice versa. Whenever the abnormal value appears,

we calculate the anomaly score by one minus the entropy of

observed samples as

AS(γ) =

{

1 + γ log2 γ + (1− γ) log2(1 − γ) if 0 < γ < 1

1 if γ = 0 or 1

where γ =
number of 0s observed

number of samples observed
.

For the analog measurement type, we take the Smart Grid

as an example. Frequency, voltage, current, and power are

four most common classes of analog measurements and they

usually have quite different characteristics. The two subfigures

in Figure 4 show one day of simulated frequency and current

(a) Frequency (b) Current

Fig. 4. One day’s simulated measurement data of frequency and current

measurements from the Information Trust Institute’s testbed

[23]. We can see that ‘frequency’ is always around 60Hz

and has a very small relative standard deviation whereas

‘current’ varies a lot but follows a diurnal pattern. Based on

different analog classes’ characteristics, we develop a 2-step

anomaly detection method to analog measurements. In step

1, we further categorize analog measurements into different

analog classes (i.e., frequency, voltage, current, power) and use

an appropriate method for each class to detect anomalies in

step 2. Notice that if the configuration files of remote devices

are available and the specification of each analog index is

known to our framework, step 1 can be neglected. Step 1 just

provides analog class inference ability to our framework when

specification is not given.

More specifically, in step 1 of our analog measurement

anomaly detection, we utilize a similar Bayesian inference

method as in [24] and build an analog class inference model

based on the Bayesian network. Here we use a very sim-

ple Bayesian network with one root node and three leaf

nodes shown in Figure 5. Each leaf node has a conditional

probability table (CPT) representing the prior knowledge of

the dependence between the child node and its parent node

whose elements are defined by CPTij = P (child state =
j|parent state = i). The root represents the analog class with

four hypothesis states and the leaf nodes represent directly

observable evidences and each leaf node has several discrete

states. The objective of this model is to calculate the belief

in hypotheses of the root, which is decided by the likelihood

propagated from its child nodes and ultimately the observed

evidences at the leaf nodes. We denote yk (k ∈ 1 . . . 3) as

the observation at kth leaf node and xi (i ∈ 1 . . . 4) as the

ith analog class at the root node. Let P (xi) be the prior

probability for the hypotheses of the root. The prior probability

and CPTs can either be acquired based on domain knowledge

or calculated based on training data. The believe in the analog

class xi is represented by the conditional probability of xi

given the observation at all leaf nodes and can be calculated

by

P
(

xi|y
1, y2, y3

)

= αP (xi)
3
∏

k=1

P
(

yk|xi

)

,

where α = 1/P
(

y1, y2, y3
)

and can be calculated by
∑

i P
(

xi|y
1, y2, y3

)

= 1. If the believe of xi is larger

than a threshold θb = 0.7 , the inference model infers the

analog measurement as class xi. Since the analog class for

the same series of measurements will not change in normal

status, the inference model stops analyzing for that series of

measurements after its class is successfully inferred.

Fig. 5. Analog class inference model

After the analog classes are inferred, different anomaly

detection methods are applied as shown in Table III. Mean

and standard deviation are used for frequency and voltage.

For current or power, we divide 24 hours to multiple time

slots and calculate mean and standard deviation in each of

the slot throughout multiple days. For analog measurements

not belonging to any of the mentioned classes, the 1D-

DenStream method for the flow processor is utilized. Notice

that this list of analog classes can be extended by incorporating

prior knowledge of other analog classes into the inference

model and taking their characteristics into consideration while

selecting their anomaly detection methods.

TABLE III
ANALOG MEASUREMENT CLASS AND DETECTION MECHANISM

Analog Class Mechanism

frequency
Mean-STD

voltage

current/power slotted Mean-STD

unknown 1D-DenStream

B. Alert Manager

The alerts generated by EDMAND’s multi-level anomaly

detector which have confidence score higher than a threshold

θCS are forwarded into the alert manager. We use a dynamic

mechanism for θCS . The initial threshold is set at a upper

bound value of θCS H = 0.95. For every alert with CS
above the current threshold, we calculate the new thresh-

old as θCS new = e−λ(θCS cur − θCS L) + θCS L where

θCS L = 0.85 is a lower bound and λ = 0.05 is a parameter

can be tuned. While we exponentially decrease the threshold to

approach the lower bound for triggered alerts, we also linearly

increases the threshold to the upper bound as time goes by.

Keeping an high threshold in normal state helps to decrease

false alarms and decreasing the threshold when alarms are

triggered helps to detect all anomalies related to the attack and

is useful against multi-step attacks. Since the alert from the

three levels share the same threshold, alerts in one level will

lower the threshold, making it easier to detect simultaneous

anomalies in the other two levels if there are any.

Alerts generated by different processors share the following

common fields: index field, alert type, timestamp, confidence

score, statistical fields and abnormal data. Index field is the

same as the index field in the input data of the corresponding

processor. Alert type is the description of the anomaly. Statis-

tical fields include statistics in the data field such as current

data value, mean, standard deviation, etc. Abnormal data is the

original input data of the processor which triggering the alert.

As it is shown in Figure 6, the alert manager consists of two

components: the Alert Aggregator and the Alert Scheduler.

Fig. 6. Alert manager structure

Fig. 7. Alert priority computation model

The objective of the alert aggregator is to aggregate alerts

that share the same alert type as well as the index field and

have little difference in timestamps. The aggregated alert is

called the meta-alert. The meta-alert inherits all the fields from

the alerts before aggregation with each field type having its

own aggregation rule listed in Table IV. Another count field is

added to store the number of alerts aggregated to this meta-

alert. Whenever the alert aggregator receives a new alert, it

tries to aggregate it to existing meta-alerts. If there is no meta-

alert that this alert can merge to, a new meta-alert is created.

In this way, consecutive duplicate alerts about the same event

are aggregated to one meta-alert, which prevents alert flooding

and simplifies further analysis of the alerts.

TABLE IV
META-ALERT FIELDS AND AGGREGATION RULES

Alert Field Aggregation Rule

index field
shared by all of the aggregated alerts

alert type

timestamp keep minimum and maximum

confidence score keep maximum

statistical fields
inherit from the last alert aggregated

anomaly data

count number of aggregated alerts

Every time a meta-alert is created or updated, it is forwarded

to the alert scheduler, where its priority score is calculated and

its report frequency is decided. The alert priority computation

model in Figure 7 is similar to the analog class inference

model. It is a Bayesian network with one root node and five

leaf nodes. The root represents the alert priority which has

two hypothesis states of low and high. Similarly, the leaf

nodes represent observable evidence and each has several

discrete states. We denote yk (k ∈ 1 . . . 5) as the observa-

tion at kth leaf node. We define the priority score PS as

PS = P
(

Priority = high|y1, y2, y3, y4, y5
)

which can be

calculated in a similar way as the analog class inference model.

The prior probability of priority, CPTs at leaf nodes, and

criteria to categorize observation are set by domain knowledge

or system requirements. For example, the critical operation set

for DNP3 can be defined by the DNP3 critical request function

codes in [25] or entered by utilities according to their own

needs.

Different report mechanisms in Table V are applied to

meta-alerts based on their priority scores PS. After PS is

calculated, the meta-alert is classified as high-priority or low-

priority, based on PS and a threshold θp = 0.7 as shown

in Table V. High-priority meta-alerts are always reported

immediately when first created and reported with a small

period if they are updated during that period. Low-priority

meta-alerts are not reported immediately upon creation and

reported with a large period if they are updated during the

period. In the future, we plan to design a causality-based

anomaly analyzer in the control center to further correlate and

analyze the received alerts.
TABLE V

META-ALERT REPORT MECHANISM

High-Priority Low-Priority

Definition PS ≥ θp PS < θp

Report when first created yes no

Report period Th Tl(> Th)

V. EVALUATION

In this section, we evaluate the performance of EDMAND

in two aspects: detection ability and time overhead. The data

extractor is implemented by Bro and the anomaly detector as

well as the alert manager are implemented in Python. The

evaluation is based on a simulated DNP3 traffic set which

includes periodic baseline traffic and injected anomalies in

transport, operation, and content levels. The baseline traffic

consists of 10 days of simulated traffic of one control center

sending read requests to two remote devices every 20 seconds.

Each read request is followed by a TCP acknowledgement as

well as a response from the remote device. After the response

which contains the requested measurements is received by the

control center, the control center sends a confirmation which

is again followed by an acknowledgement from the remote

device. Each remote device contains 5 measurements: one

binary measurement and four analog measurements including

frequency, voltage, current and power. Those measurements

are simulated data from Information Trust Institute’s testbed.

The analog class inference model correctly identifies all ana-

log classes in the baseline traffic. We inject various anomalies

in the three levels listed in Table VI to evaluate EDMANDs

anomaly detection ability. EDMAND is able to detect all the

anomalies injected with no false alarms. All the anomalies

generate 12135 alerts in total, which are aggregated to 22
meta-alerts. We also list in Table VI some related works’

detection abilities based on their description for anomalies

which we injected. None of them are able to detect all

anomalies like EDMAND does.

We also create an simple multi-step attack scenario with

simulated traffic. In step 1, the attacker scan several ports in

a given IP range to find the target field device and the ICS

protocol the SCADA system is using. In step 2, the attacker

send a write request to the field device to compromise the

device. In step 3, the compromised device send tampered data

in responses to read requests from the control center. ED-

MAND is able to detect all three steps of the attack where the

three steps are detected in transport level, operation level, and

content levels respectively. A framework only concentrating

on one or two levels of data may not be able to see the whole

picture of the attack.

One of our design decisions is to apply appropriate anomaly

detection mechanisms to data, based on their characteristics.

We use the 1D-DenStream mechanism for the packet processor

since its data fields (i.e., interarrival time and packet size)

follow multimodal distributions. To validate this design deci-

sion, we use the Mean-STD mechanism instead for the packet

processor. We find that the modified packet processor is unable

to detect the padded response and the delayed TCP acknowl-

edgement, and generates tons of false alarms. This proves that

selecting appropriate anomaly detection mechanism according

to data characteristics is important. We also validate the alert

priority computation model by calculating priority scores of

meta-alerts triggered by two anomalies. The first anomaly is

that the control center suddenly starts to send periodic write

request (critical operation) to the remote device, which is

considered a critical node. The second anomaly is the delay

of one TCP acknowledgement from a remote device which is

not a critical node. The meta-alert for the first anomaly has

a priority score of 0.995, which is higher than the score of

0.439 for the second anomaly. This is consistent with the fact

that the first anomaly is more critical than the second one.

To demonstrate EDMANDs ability to satisfy the real-time

requirements of anomaly detection in SCADA systems, we

also evaluate the time overhead of data analysis in the three

levels and the alert manager. We run our experiments on a

Ubuntu 16.04 desktop with 12 Intel Xeon 3.60GHz CPUs and

16GB memory. The data extraction in Bro and the anomaly

detection for the three levels run in parallel. The total analysis

time (data extraction time + anomaly detection time) per

packet of the three levels are 3.87ms for transport level, 6.66ms

for operation level, and 1.94ms for content level. Since the

common data collection interval in SCADA systems is seconds

or even minutes, several milliseconds of time overheads per

packet are short enough for the packets to be processed in

communication line speed. The average time overhead of the

anomaly manager for each alert is 423ms. Since the rate of

alerts is far smaller than the rate of packets, the overhead of

423ms for each alert is still practical.

VI. CONCLUSION

In this paper, we present EDMAND, an edge-based multi-

level anomaly detection framework for SCADA systems.

EDMAND resides in remote substations of SCADA systems

and monitors network traffic of flow level, operation level,

and content level. Distinct data characteristics are taken into

consideration when selecting anomaly detection method for

each level. When anomalies are detected, EDMAND gen-

erates, aggregates, and prioritizes alerts and send them to

control centers. The performance of EDMAND is validated

by experiments. EDMAND is only a component of our entire

framework. In the future, we are going to build a anomaly

analyzer which takes the meta-alerts from the three levels as

inputs and use causal reasoning to analyze the causes and

consequences of the anomalies. The correlation of anomalies

in the three levels will be mainly utilized in the analyzer.

TABLE VI
INJECTED ANOMALIES AND DETECTION ABILITY COMPARISON

Level Anomaly
Detection Ability

EDMAND [4] [9] [11] [13] [15]

Transport
add a new node to send several packets to one remote device yes yes no no yes yes

pad one response from a remote device with more payload yes yes no no yes yes
delay one TCP acknowledgement from a remote device intentionally yes yes no no no no

send lots of ICMP packets in a short period to one remote device yes yes no no yes yes

Operation
send one operation with invalid function code to one remote device yes no yes may yes yes
let one remote device send a control command to the control center yes no yes may yes yes

delay one response from a remote device intentionally yes may no no no yes

Content

tamper the binary value from on remote device for a short period yes no no yes no yes
introduce over voltage and under voltage tripping to voltage measurements yes no no yes no yes

introduce over current tripping to current measurements yes no no may no may
tamper the frequency value from one remote device for a short period yes no no yes no yes

tamper the power value from one remote device for a short period yes no no may no may

ACKNOWLEDGEMENT

This material is based upon work supported by the Depart-

ment of Energy under Award Number DE-OE0000780.

DISCLAIMER

This report was prepared as an account of work sponsored

by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any of

their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would

not infringe privately owned rights. Reference herein to any

specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not nec-

essarily constitute or imply its endorsement, recommendation,

or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States

Government or any agency thereof.

REFERENCES

[1] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in assessing
vulnerabilities in SCADA systems,” in Proceedings of the international

infrastructure survivability workshop, 2004.

[2] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White

paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[3] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,”
Electricity Information Sharing and Analysis Center (E-ISAC), 2016.

[4] L. A. Maglaras and J. Jiang, “Intrusion detection in scada systems using
machine learning techniques,” in Science and Information Conference

(SAI), 2014. IEEE, 2014, pp. 626–631.

[5] R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi, and M. Ek-
stedt, “Exploiting bro for intrusion detection in a SCADA system,” in
Proceedings of the 2nd ACM International Workshop on Cyber-Physical

System Security. ACM, 2016, pp. 44–51.

[6] I. N. Fovino, A. Coletta, A. Carcano, and M. Masera, “Critical state-
based filtering system for securing SCADA network protocols,” IEEE

Transactions on industrial electronics, vol. 59, no. 10, pp. 3943–3950,
2012.

[7] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono, and
H. Wang, “Intrusion detection system for IEC 60870-5-104 based
SCADA networks,” in Power and Energy Society General Meeting

(PES), 2013 IEEE. IEEE, 2013, pp. 1–5.

[8] J. M. Beaver, R. C. Borges-Hink, and M. A. Buckner, “An evaluation
of machine learning methods to detect malicious SCADA communi-
cations,” in Machine Learning and Applications (ICMLA), 2013 12th

International Conference on, vol. 2. IEEE, 2013, pp. 54–59.

[9] H. Lin, A. Slagell, C. Di Martino, Z. Kalbarczyk, and R. K. Iyer, “Adapt-
ing bro into scada: building a specification-based intrusion detection
system for the dnp3 protocol,” in Proceedings of the Eighth Annual

Cyber Security and Information Intelligence Research Workshop. ACM,
2013, p. 5.

[10] H. R. Ghaeini and N. O. Tippenhauer, “Hamids: Hierarchical monitoring
intrusion detection system for industrial control systems,” in Proceedings

of the 2nd ACM Workshop on Cyber-Physical Systems Security and

Privacy. ACM, 2016, pp. 103–111.
[11] W. Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA control

system command and response injection and intrusion detection,” in
eCrime Researchers Summit (eCrime), 2010. IEEE, 2010, pp. 1–9.

[12] J. Nivethan and M. Papa, “A SCADA intrusion detection framework
that incorporates process semantics,” in Proceedings of the 11th Annual

Cyber and Information Security Research Conference. ACM, 2016,
p. 6.

[13] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA security scientific symposium, vol. 46.
Citeseer, 2007, pp. 1–12.

[14] N. Saunders, B. Khanna, and T. Collins, “Real-time situational aware-
ness for critical infrastructure protection,” in Smart Grid Communi-

cations (SmartGridComm), 2015 IEEE International Conference on.
IEEE, 2015, pp. 151–156.

[15] Y. Yang, K. McLaughlin, S. Sezer, T. Littler, E. G. Im, B. Pranggono, and
H. Wang, “Multiattribute SCADA-specific intrusion detection system for
power networks,” IEEE Transactions on Power Delivery, vol. 29, no. 3,
pp. 1092–1102, 2014.

[16] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[17] N. Goldenberg and A. Wool, “Accurate modeling of Modbus/TCP
for intrusion detection in SCADA systems,” International Journal of

Critical Infrastructure Protection, vol. 6, no. 2, pp. 63–75, 2013.
[18] N. Erez and A. Wool, “Control variable classification, modeling and

anomaly detection in Modbus/TCP SCADA systems,” International

Journal of Critical Infrastructure Protection, vol. 10, pp. 59–70, 2015.
[19] S. Ponomarev and T. Atkison, “Industrial control system network intru-

sion detection by telemetry analysis,” IEEE Transactions on Dependable

and Secure Computing, vol. 13, no. 2, pp. 252–260, 2016.
[20] R. R. R. Barbosa, “Anomaly detection in SCADA systems: a network

based approach,” 2014.
[21] W. Ren, S. Granda, T. Yardley, K.-S. Lui, and K. Nahrstedt, “OLAF:

Operation-level traffic analyzer framework for Smart Grid,” in Smart

Grid Communications (SmartGridComm), 2016 IEEE International

Conference on. IEEE, 2016, pp. 551–556.
[22] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over

an evolving data stream with noise,” in Proceedings of the 2006 SIAM

international conference on data mining. SIAM, 2006, pp. 328–339.
[23] Cyber-physical experimentation environment for RADICS.

https://iti.illinois.edu/research/energy-systems/
cyber-physical-experimentation-environment-radics-ceer.

[24] X. Qin, “A probabilistic-based framework for infosec alert correlation,”
Ph.D. dissertation, Georgia Institute of Technology, 2005.

[25] DNP3 secure authentication.
http://www.scadahackr.com/library/Documents/ICS Protocols/
DNP3%20Secure%20Authentication%20v5%202011-11-08.pdf.

