
CAPTAR: Causal-Polytree-based Anomaly
Reasoning for SCADA Networks

Wenyu Ren∗, Tuo Yu∗, Timothy Yardley∗, Klara Nahrstedt∗
∗ University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Email: {wren3, tuoyu2, yardley, klara}@illinois.edu

Abstract—The Supervisory Control and Data Acquisition
(SCADA) system is the most commonly used industrial control
system but is subject to a wide range of serious threats. Intrusion
detection systems are deployed to promote the security of SCADA
systems, but they continuously generate tremendous number of
alerts without further comprehending them. There is a need
for an efficient system to correlate alerts and discover attack
strategies to provide explainable situational awareness to SCADA
operators. In this paper, we present a causal-polytree-based
anomaly reasoning framework for SCADA networks, named
CAPTAR. CAPTAR takes the meta-alerts from our previous
anomaly detection framework EDMAND, correlates the them
using a naive Bayes classifier, and matches them to predefined
causal polytrees. Utilizing Bayesian inference on the causal
polytrees, CAPTAR can produces a high-level view of the security
state of the protected SCADA network. Experiments on a
prototype of CAPTAR proves its anomaly reasoning ability and
its capabilities of satisfying the real-time reasoning requirement.

Index Terms—Smart Grid, SCADA, causal analysis, anomaly
reasoning

I. INTRODUCTION

Nowadays, large-scale distributed critical infrastructure sys-
tems such as power grids and refineries increasingly rely on
digital industrial control systems (ICSs) for real-time moni-
toring, data collection, and control. The Supervisory Control
and Data Acquisition (SCADA) system is the most commonly
used ICS. Critical as they are, SCADA systems are subject to a
wide range of serious threats [1]. Therefore, securing SCADA
systems against various threats and vulnerabilities has become
a major challenge.

To promote the security of SCADA systems, intrusion de-
tection systems (IDSs) are increasingly deployed by SCADA
operators. As the name suggests, the main objective of IDSs
is to monitor the system, detect suspicious activities caused by
intrusion attempts, and report alerts to the system operators.
Although IDSs play an undeniable role in the protection of
SCADA systems, they still suffer from some defects. The
biggest issue with traditional IDSs is that they continuously
generate tremendous number of alerts without further com-
prehending them. Drowned in an ocean of unstructured alerts
mixed with false positives, SCADA operators are almost blind
to see any useful information. Due to the high volume and low
quality of the alerts, it becomes a nearly impossible task for
the operators to figure out the complete pictures of the attacks
and take appropriate actions in a timely manner.

To address the aforementioned problem of traditional IDSs
and provide the SCADA operators with explainable situational
awareness, there is a need for an efficient system to aggregate
redundant alerts from IDSs, correlate them in an intelli-
gent manner, and discover attack strategies based on domain
knowledge as well as causal reasoning. In a previous work
[1], we present an edge-based multi-level anomaly detection
framework for SCADA, named EDMAND. EDMAND resides
at the edges of the SCADA network and detects anomalies
in multiple levels of the network. The triggered alerts are
aggregated, prioritized, and sent to the control center. In this
paper, we present a causal-polytree-based anomaly reasoning
framework for SCADA networks, named CAPTAR. CAPTAR
resides in the control center of the SCADA network and takes
the meta-alerts from EDMAND as input (shown in Fig. 1).
CAPTAR correlates the alerts using a naive Bayes classifier
and matches them to predefined causal polytrees. Utilizing
Bayesian inference on the causal polytrees, CAPTAR can
reveal the attack scenarios from the alerts and produces a
high-level view of the security state of the protected SCADA
network.

Fig. 1: Locations of EDMAND and CAPTAR

The remainder of this paper is organized as follows: Section
II reviews the related work. Section III introduces the basic
concept Bayesian inference by belief propagation and two
canonical models which are used to build our causal polytrees.
Section IV gives an overview of the design of CAPTAR.
Section V shows the performance evaluation of CAPTAR and
Section VI concludes the paper.

II. RELATED WORK

Various techniques have been used to measure the simi-
larity of common features of alerts to correlate them [2]–
[5]. However, alert correlation alone can only measure the
correlation strength between alerts and are not sufficient to
recognize the whole picture of the attack. To fill the gap,
many works have been proposed in the area of attack plan
recognition. Some works [6], [7] keep the state of the system
and assume that the state evolves towards a “worse” direction
during attacks. There are also works [8], [9] that define pre-
requisites and consequences of each attack step and construct978-1-5386-8099-5/19/$31.00 ©2019 IEEE

chains or graphs based on the matching of prerequisites and
consequences. Bayesian networks are also utilized by many
papers [8], [10]–[13] to correlate alerts or to represent and
infer the causal relationship between attack steps. The closest
previous work [14] to ours is the integration of alert aggre-
gation, prioritization, correlation, and attack plan recognition.
Three alert correlation methods are proposed: probabilistic-
based, causal discovery-based, and temporal based methods.
The attack plan recognition step also uses causal polytrees to
represent attack plans.

CAPTAR mainly differentiates from all previous works in
two aspects. First, the alerts received by CAPTAR are meta-
alerts generated by EDMAND, which is our edge-based multi-
level anomaly detection framework for SCADA. EDMAND
applies network-based rather than host-based detection and
it mainly takes the anomaly-based approach instead of the
signature-based approach. The alerts from EDMAND do not
directly relate to each attack step in the attack plan but instead
relate to various network behaviors triggered by each attack
step. Therefore, mapping between alerts from EDMAND and
underlying attack steps is necessary for our anomaly reasoning.
Second, we define the concept of confidence score for each
alert in EDMAND. In CAPTAR, the confidence scores of
meta-alerts are utilized to calculate the diagnostic support for
each node in the causal polytrees during the belief propagation.
This allows each alert to carry more belief information instead
of only a binary state (exist/not exist).

III. PRELIMINARIES

Before describing the design of CAPTAR, we first introduce
the belief propagation algorithm to conduct Bayesian infer-
ence. Then, we present two canonical models we use to build
our causal trees: “noisy-OR” and“noisy-AND” models.

A. Belief Propagation

Belief propagation via message passing [15] is an algorithm
to conduct inference on Bayesian networks. To make it clearer,
we first illustrate the belief propagation rules in a general
tree-structured Bayesian network where a node might have
several children and one parent. In the next subsection, we
will introduce the two canonical models which generalize our
causal trees to polytrees.

We illustrate the belief propagation by specifying the ac-
tivities of a typical node X having m children, Y1, Y2, . . . ,
Ym, and a parent U as shown in Fig. 2. The belief in the
various values of X depends on two distinct sets of evidence:
evidence from the sub-tree rooted at X , and the evidence
from the rest of the tree. In general, let us define e−X as the
evidence contained in the tree rooted at X and define e+X as
the evidence contained in the rest of the network. e−Yj

therefore
represents the evidence from the sub-tree rooted at Yj where
j ∈ {1, . . . ,m}. x ∈ {0, 1} is a particular value of X and
u ∈ {0, 1} is a particular value of U . The belief distribution
of variable X can be calculated based on the following three
kinds of parameters:

1) Causal Support: πX(u) = P (u|e+X), contributed by
parent of X .

2) Diagnostic Support: λYj
(x) = P (e−Yj

|x), contributed by
the Yj which is the j-th child of X where j ∈ {1, . . . ,m}.

3) Conditional Probability Table (CPT): P (x|u) that relates
the variable X to its direct parent U . Each entry P (x|u)
in the table defines the probability of value x of node X
given certain value u of node U .

Fig. 2: Fragment of a causal tree, showing different kinds of
evidence and support of a node X

The belief propagation algorithm runs whenever new evi-
dence is found in the tree. The propagation starts from the node
which receives the new evidence and the new belief propagates
along the edges of the tree until all nodes get updated. The
local belief updating at each node X can be executed by three
steps in any order.

Belief Propagation Algorithm
Step 1 — Belief updating: Node X updates its belief mea-
sure based on the πX(u) message from its parent and the
messages λY1

(x), λY2
(x), . . . , λYm

(x) from each of its
children as shown in Fig. 2.

BEL(x) = αλ(x)π(x), (1)
where λ(x) =

∏
j λYj

(x), π(x) =
∑

u P (x|u)πX(u), and α
is a normalizing constant rendering

∑
x BEL(x) = 1.

Step 2 — Bottom-up propagation: Node X computes a new
message λX(u) based on its CPT and λ messages received
from its children. Then X sends λX(u) to its parent U .

λX(u) =
∑
x

λ(x)P (x|u), (2)

Step 3 — Top-down propagation: Node X computes new
π messages and sends them to its children. The new πYj

(x)
message for its j-th child Yj is calculated as

πYj (x) = απ(x)
∏
k 6=j

λYk
(x). (3)

Boundary conditions and more details about the derivation
of the algorithm can be found in [15].

B. The “noisy-OR” and“noisy-AND” Models

In Section III-A, we illustrate the belief propagation algo-
rithm in a general tree-structured Bayesian network where a
node has at most one parent. However, this structure lacks
the ability to represent nodes that might have multiple causes
(i.e., node may have multiple parents). In this subsection, we
introduce two canonical models which allow us to generalize
our causal trees to causal polytrees. The difference between
a polytree and a normal tree is that a node could have
multiple parents in a polytree. The two canonical models

contain structures similar to logical OR-gate and AND-gate
with noises and are thus called “noisy-OR” and “noisy-AND”
models. The characteristics of these two typical structures
enable us to conduct the belief updating more efficiently in
polytrees.

The “noisy-OR” model [15] is based on the noisy OR-
gate structure shown in Fig. 3. Each node represents an event
with binary state 0 or 1. For a node X with n parents
U = {U1, U2, . . . , Un}, its value can be seen as the output
of a logical OR-gate. Each input to the OR-gate is the output
of an AND-gate representing the conjunction of Ui and the
negation of its specific inhibitory mechanism Ii. The inhibitors
I1, . . . , In represent exceptions or abnormalities that interfere
with the normal relationship between U and X . We use qi
to represent the probability that the i-th inhibitor is active.
Assume all inputs are 0 except Ui = 1. X will only be
1 if and only if the inhibitor Ii associated with Ui remains
inactive. That is, P (X = 1|Ui = 1, Uk = 0 k 6= i) = 1 − qi.
Therefore, ci = 1−qi represents the degree to which the single
cause Ui = 1 can endorse the consequent event X = 1. Let
u = (u1, u2, . . . , un) ui ∈ {0, 1} represent any assignment
of values to parent set U . Note that both u and U are vectors
since X could have multiple parents. Let Tu = {i : Ui = 1}
represent the subset of parents that are 1. In the “noisy-OR”
model, a link matrix P (x|u) is used to relate X to its parent
set U and can be written as

P (x|u) =

{∏
i∈Tu

qi x = 0

1−
∏

i∈Tu
qi x = 1.

(4)

Fig. 3: The noisy OR-gate

Having the link matrix P (x|u), we can follow similar belief
propagation algorithm described in Section III-A. The belief
propagation algorithm in “noisy-OR” model also has three
steps and the details can be found in [16].

The “noisy-AND” model [15] is based on the noisy AND-
gate structure and has very similar properties to the “noisy-
OR” model. More details about the characteristics of the
“noisy-AND” model and the belief propagation algorithm in
the model are included in [16].

IV. DESIGN OVERVIEW

As we mentioned in Section I, CAPTAR resides in the
control center of the SCADA network and its inputs are meta-
alerts sent by EDMAND at the edge of the network. In this
section, we present a design overview of CAPTAR. The main
architecture of CAPTAR is shown in Fig. 4. CAPTAR consists
of 4 components: (1)Meta-alert Database, (2)Attack Template
Database, (3)Alert Correlator, (4)Causal Reasoning Engine.

Fig. 4: CAPTAR architecture
The meta-alert database is used to store the meta-alerts from

EDMAND which serve as evidence to our causal reasoning of
anomalies. The attack template database stores the potential
attack templates which are causal polytrees created by domain
experts. The alert correlator takes two meta-alerts as inputs
and outputs a correlation score which is used to decide
whether the two input meta-alerts are correlated or not. The
core component of CAPTAR is the causal reasoning engine
which interacts with all other three components. When the
causal reasoning engine is started, it fetches copies of the
attack templates in the database and conducts alert matching
as well as belief propagation on them. The meta-alerts are
retrieved from the meta-alert database and the alert matching
is done using the alert correlator. Whenever the belief of an
attack is high enough, the engine outputs the causal polytree
corresponding to that attack with matched alerts. The operator
can further analyze the believes and matched alerts in the
causal polytree to understand each step of the attack. In the
following subsections, we will introduce the meta-alert, the
attack template, the alert correlator, and the causal reasoning
engine in more detail.

A. Meta-alert

Meta-alerts are generated by EDMAND and sent to the
control center where CAPTAR resides. Each meta-alert is
the aggregation of similar alerts and has several fields. The
fields that will be used in CAPTAR are alert id, alert type,
index field, timestamp, confidence score. Alert id is a string
that is unique for each meta-alert. The received meta-alerts
from EDMAND will be first stored in the meta-alert database
and the alert id serves as the key to locate and retrieve the
meta-alert from the database. Alert type is a name that briefly
describes the meta-alert. The current prototype of EDMAND
generates 24 types of alerts from the transport, operation, and
content levels and a complete list can be found in [16]. For
simplicity reason, we assign an alert type index to each alert
type and we will use the index to represent the corresponding
alert type. Index field of the meta-alert contains additional
information that helps to describe the meta-alert, such as IP
addresses, protocol, service, etc. This field is later used by
the alert correlator to correlate meta-alerts. Timestamp field
simply contains a pair of timestamps (start time, end time).
They are the timestamps of the earliest and the latest alerts
that have been aggregated to the meta-alert. Confidence score
field in the meta-alert represents the confidence that the meta-

alert is an anomaly indeed [1]. If meta-alerts are matched to a
node in our causal polytree to provide evidence, the confidence
scores of the matched meta-alerts are used to calculate the
strength of the evidence.

B. Attack Template

As we mentioned in Section III, we utilize causal polytrees
to reason about anomalies in SCADA networks. We call
these special causal polytrees attack templates and use AT s
to represent them. Attack templates are created by domain
experts and stored in the attack template database. When an
attack is launched, the triggered meta-alerts from EDMAND
are matched to the corresponding attack template and the belief
propagation is conducted on it. An example attack template for
the data integrity attack is shown in Fig. 5. Each node X in
an attack template AT is an attack step with zero, one, or
multiple parents and children. Each parent represents a prior
cause attack step that can lead to the current one and each
child represents a posterior consequence attack step that the
current one can lead to. If there are multiple parents, they
follow either the “noisy-OR” or the “noisy-AND” model. The
prior probability at each node, the probabilities qis of the
inhibitory or enabling mechanisms in “noisy-OR” and “noisy-
AND” models are all specified by domain experts (e.g. power
grid/SCADA security administrator) when the attack template
is created. Also, each attack template AT contains one or
more sink nodes (shaded node in Fig. 5). Denote the set of
sink nodes as SAT . Nodes in SAT represent the final targets
of the entire attack and we call them consequence nodes. Each
consequence node has domain knowledge associated with such
as attack consequence, severity, and potential countermeasure.

Fig. 5: Attack template of the data integrity attack

Each attack step (each node) has two binary states: not
exist (0) and exist (1). However, the attack steps cannot be
observed directly. We can only infer the existence of each
attack step by the alerts it triggers in EDMAND. Each attack
step could trigger meta-alerts that belong to multiple1 alert
types. Multiple meta-alerts can match to one alert type of an
attack step and serve as evidence to each attack step node.
We create a structure, called alert unit table, to store the
matched meta-alerts at each attack step. An example of the
alert unit table is shown in Table I. Each row in the table
is an alert unit (AU), which represents one proportion of
evidence. Let us assume there are k alert units in the table.
Each alert unit AU i consists of a weight wi and a list of
alert types Ai1, Ai2, . . . , Aini

, where ni is the number of alert

1It is also possible that one attack step triggers no alerts in EDMAND. In
this case, we can only infer the existence of this attack step by the existence
of its parents and children.

types in AU i. Therefore, AU i = {wi, Ai1, Ai2, . . . , Aini}.
wi represents how much the observation of one or more of
the following alert types Ai1, Ai2, . . . , Aini

can prove the
existence of the attack step and

∑
i wi = 1. Alert types in the

same alert unit express the same aspect of the attack step. Each
alert type Aij in the alert unit table can contain multiple meta-
alerts from EDMAND of the same corresponding alert type.
For example, in the “data integrity attack” attack step in Figure
5, the alert unit table contains one alert unit {1, 21, 22, 23}.
Since there is just one alert unit, its weight is 1. The three alert
types are 21, 22, and 23, which represent BINARY_FAULT,
ANALOG_TOO_LARGE, and ANALOG_TOO_SMALL. These
three types of content-level meta-alerts all represent the actual
tampering of the measurement data and are therefore included
in the same alert unit.

TABLE I: Alert unit table for each attack step

Alert Unit Weight Alert Types
AU 1 w1 A11, A12, . . . , A1n1

AU 2 w2 A21, A22, . . . , A2n2

...
...

...
AU k wk Ak1, Ak2, . . . , Aknk

When meta-alerts are matched to a node X and stored in
its alert unit table, we add a dummy auxiliary child node X̃
to X as shown in Fig. 6 and simulate the evidence from those
meta-alerts by letting X̃ provide a diagnostic support message
λX̃(x) to X . The confidence scores of the matched meta-
alerts are used to calculate λX̃(x). For each alert type Aij

in the alert unit table, we assume there are mij meta-alerts
aij1, aij2, . . . , aijmij

matched to it. The confidence scores of
them are CS (aij1),CS (aij2), . . . ,CS (aijmij

). Let CS (Aij)
be the confidence score of the alert type Aij and it is calculated
as

CS (Aij) =
∏mij

l=1 CS (aijl)∏mij

l=1 CS (aijl) +
∏mij

l=1 (1− CS (aijl))
mij > 0

Pmiss mij = 0

, (5)

where Pmiss is a probability of missing meta-alerts and can be
predefined by experience or calculated if training data is avail-
able. After we have confidence score calculated for every alert
type in one alert unit AU i, we can write the confidence score
of the alert unit CS (AU i) as CS (AU i) = maxni

j=1 CS (Aij).
The final total confidence score of the attack step CS total is
calculated by CS total =

∑k
i=1 wiCS (AU i). The diagnostic

support λX̃(x) provided by all the matched alerts to the attack
step X is written as

λX̃(x) =

{
1− CS total x = 0

CS total x = 1
. (6)

C. Alert Correlator

CAPTAR’s anomaly reasoning consists of meta-alert match-
ing and belief propagation. Meta-alert matching is the process
of matching meta-alerts to attack steps (in attack templates)

Fig. 6: Auxiliary child X̃ of X representing evidence received
by X

that trigger them. And the most important step of alert match-
ing is to decide whether two meta-alerts are correlated or not.
Therefore, the alert correlator is designed for this purpose.
The alert correlator is a naive Bayes classifier whose graphical
representation is a Bayesian network in Fig. 7 with one root
node X and three leaf nodes Y1, Y2, and Y3. The root node X
represents the hypothesis that “the two input meta-alerts are
correlated” and has two states: “yes” (1) and “no” (0). Each
leaf node Yj (j ∈ {1, 2, 3}) stands for one type of observable
evidence that helps to evaluate the hypothesis and has several
discrete states. Depending on whether two meta-alerts are
correlated or not, the distribution of states at the evidence
nodes will be different. Therefore, based on the observed
states at the evidence nodes, one can infer the probability
that two meta-alerts are correlated. We consider three kinds
of observable evidence while correlating two meta-alerts: time
difference (Y1), IP similarity (Y2), and whether they share the
same service (Y3). More details of the assigning of states for
each leaf node are included in [16].

Fig. 7: Alert correlation model
Let x (x ∈ {0, 1}) represent the state of the root node in

Figure 7. Let yj (j ∈ {1, 2, 3}) represent the state at each leaf
node Yj and ŷj represent the already observed state. There
is a conditional probability table (CPT) at each leaf node Yj
which relates Yj to X . Each entry P (yj |x) in the table defines
the probability of state yj of node Yj given certain state x of
node X . The prior probability P (x) varies depending on the
alert types of the two input meta-alerts. There is a predefined
prior probability for each pair of alert types based on domain
knowledge. According to the believe propagation, the belief
at root X can be calculated as

BEL(x) = απ(x)

3∏
j=1

λYj (x) = αP (x)

3∏
j=1

P (ŷj |x), (7)

where α is a normalizing factor rendering
∑

x BEL(x) = 1.
We say two meta-alerts are correlated if BEL(1) > 0.5 for X .
Let a and b be the two input meta-alerts for the alert correlator.
We define the CORRELATE procedure of the alert correlator
as follows:

CORRELATE(a, b) =

{
BEL(1) BEL(1) > 0.5

−1 otherwise,
(8)

D. Causal Reasoning Engine

The causal reasoning engine is the core component of
CAPTAR and it interacts with all other three components.
When the causal reasoning engine starts, it fetches copies of
attack templates AT s from the attack template database and
creates an attack template set ATS. Then it runs an anomaly
reasoning algorithm to perform alert matching and belief
propagation on the attack templates in the attack template set.

The anomaly reasoning algorithm is shown in Algorithm
1. The ANALYZEALERT procedure in this algorithm is called
whenever CAPTAR receives a new meta-alert or an update
to an existing alert. The procedure takes the meta-alert a and
the current attack template set ATS in the causal reasoning
engine as inputs. The output is a new attack template set
ATSnew with the meta-alert a matched to some of the
attack templates inside and belief propagation performed. The
procedure has two cases. If a is an update to an existing
meta-alert, then some attack templates in ATS might already
have a matched. For each AT of those attack templates, the
algorithm gets the node X in AT that a is matched to. Since
the meta-alert is updated, the procedure recalculates the total
confidence score CStotal of X . The diagnostic support λx̃(x)
from all the matched alerts is also recalculated. Since the
evidence contained at X changes, a belief propagation in AT
from node X is initiated. In this case, the ATS with the
updated attack templates are directly assigned to ATSnew

for output. If a is a newly detected meta-alert, the algorithm
iterates over the entire set ATS. For each attack template
AT in ATS, it uses the alert correlator to match the meta-
alert a to nodes in AT and performs a belief propagation
if there is a successful match. This process is included in
the procedure called MATCHALERT. This procedure takes
a and AT as inputs and outputs a set of attack templates
ATSmatch. The attack templates in ATSmatch are copies
of AT with a matched and belief propagation performed.
Since it is possible that a can match to multiple nodes in
AT , ATSmatch could contain multiple copies. If a cannot
be matched to AT , ATSmatch will just contain the original
AT . After we get ATSmatch from MATCHALERT(a,AT),
the attack templates in ATSmatch are all added to ATSnew.
Due to the limit of space, more details of the MATCHALERT
is not included here and can be found in [16].

For each attack step X in an attack template AT , BELX(1)
represents the probability of existence of this attack step.
Since consequence nodes in SAT stand for final targets of
the entire attack represented by AT , the maximum proba-
bility of existence of all consequence nodes in AT , denoted
by BELmax(AT), can represent the inferred success possi-
bility of the attack and is calculated as BELmax(AT) =
maxX∈SAT BELX(1). After each run of the algorithm, namely
each call of procedureANALYZEALERT, the attack template
set ATS in the causal reasoning engine is replaced by
ATSnew. The engine then checks BELmax(AT) of every
attack template AT in the new attack template set. If it finds

Algorithm 1: Anomaly Reasoning Algorithm
Input:

a - meta-alert to be analyzed
ATS - attack template set

Output:
ATSnew - new attack template set

procedure ANALYZEALERT(a,ATS)
ATSnew ← ∅
if a is an update of an existing meta-alert then

for each AT in ATS that has a as a matched alert
do

recalculate CStotal and λx̃(x) of the matched
node X

start a new belief propagation in AT from node
X

end for
ATSnew ← ATS

else
for each AT in ATS do

ATSmatch ← MATCHALERT(a,AT)
add ATSmatch to ATSnew

end for
end if
return ATSnew

end procedure

BELmax(AT) > θBEL for any AT , it will output that attack
template AT for operator’s further analysis. Here θBEL is a
predefined threshold and we use θBEL = 0.8 for our CAPTAR
prototype.

During the alert matching process, the MATCHALERT pro-
cedure will explore every potential match of a and create
multiple copies of the original attack template AT if no exact
match can be found. This will increase the number of attack
templates in the attack template set ATS. To prevent the
number of attack templates from exploding, we set a maximum
limit K for the number of attack templates to keep for each
kind of attack. Attack templates with lower BELmax(AT) will
be dropped when the number exceeds the limit. Also, attack
templates will also be dropped from the set if they have not
been updated for a long time.

The attack templates, output by the causal reasoning en-
gine, represent attacks of high probability of existence in
the SCADA network. The operators can not only understand
the origin of the attacks by examining the belief of each
attack step and the corresponding alerts, but also evaluate the
attack consequences and take countermeasures by utilizing the
domain knowledge contained in the consequence nodes.

V. PERFORMANCE EVALUATION

In this section, we evaluate the anomaly reasoning ability of
CAPTAR via three simulated attack scenarios. We implement a
prototype of CAPTAR and reuse our prototype of EDMAND.
The baseline traffic is 14 days of simulated DNP3 traffic of

one control center communicating with 10 remote terminal
units (RTUs). We create three attack templates representing
three common attacks in SCADA networks: TCP SYN flood,
data integrity attack, and command injection.
• TCP SYN flood: The attack template for TCP SYN flood

is shown in Fig. 8. The attacker starts by an IP address
scan to find out the active IP addresses in the subnet.
Then the TCP SYN flood is conducted by sending a
succession of SYN requests to the target with spoofed
source addresses.

Fig. 8: Attack template of the TCP SYN flood

• Data integrity attack: The attack template for data in-
tegrity attack is shown in Fig. 5. The attacker first either
launches a man-in-the-middle attack or compromises
some field devices. The measurement data sent back to
the control center are then tampered to mislead the control
system.

• Command injection: The attack template for command
injection is shown in Fig. 9. The attacker first either
launches a man-in-the-middle attack or conducts an IP
address scan followed by a service scan. Malicious con-
trol commands are then injected into the packets to attack
the substations.

Fig. 9: Attack template of the command injection
In our evaluation, we launch the above three attacks in

our simulated SCADA network. CAPTAR together with ED-
MAND are able to identify and differentiate all three attacks.
Moreover, the output of CAPTAR gives the operator a better
idea of the likelihood of each attack step even if there is no
direct alert representation of the step. For example, the attack
step of “compromised node” in the data integrity attack has no
detectable alert by EDMAND (for now). However, CAPTAR
can still infer the high chance of existence of a compromised
node if it sees the existence of the “data integrity attack”
consequence node and the absence of the “man in the middle”
node. Notice that the expressiveness of attack templates can be
improved by increasing the number of meta-alert types that can
be triggered by EDMAND. CAPTAR can also reason about
alerts not from EDMAND as long as they are preprocessed to
follow the same format.

Let us assume M to be the number of meta-alerts in the
database, N to be the maximum number of nodes in any
attack template, L to be the number of attack templates in
the database, and K to be the maximum limit for the number

of attack templates to keep in ATS for each kind of attack.
It can be derived that the time complexity of the algorithm
is O(KLN(M + N)) in the worst case. Usually, we have
M � N , so the anomaly reasoning algorithm has an estimated
time complexity of O(KLMN) in the worst case. K and N
are usually less than 10. L should be several dozens. M is
also limited to dozens or hundreds due to the alert aggre-
gation and removing of stale meta-alerts from the database.
Therefore, the total time complexity of the algorithm is pretty
reasonable. And note that the frequency CAPTAR runs the
anomaly reasoning algorithm is decided by the frequency that
EDMAND sends meta-alerts which is limited [1]. Therefore,
CAPTAR is able to satisfy the real-time anomaly reasoning
need for those meta-alerts.

To give a better understanding of the time overhead of
CAPTAR, we measure the average time to run the FINDCOR-
RELATION procedure, the belief propagation, and the anomaly
reasoning algorithm for the three attack scenarios on a Ubuntu
16.04 desktop with 12 Intel Xeon 3.60GHz CPUs and 16GB
memory. The results are shown in Table II. We can see that
the time overheads are definitely small enough to satisfy the
real-time reasoning requirement of the meta-alerts. Note that
the average time to run FINDCORRELATION and the anomaly
reasoning algorithm varies a lot across different attack scenar-
ios. This is because the time overheads of the procedure and
the algorithm depend on the number of meta-alert M . And
those three attack scenarios generate 104(TCP SYN flood),
7(data integrity attack), and 26(command injection) meta-
alerts respectively. This results in the different time overheads
of FINDCORRELATION and the anomaly reasoning algorithm
for the three attacks.

TABLE II: Average time overhead for FINDCORRELATION,
belief propagation, and the anomaly reasoning algorithm
(T=“TCP SYN flood” D=“data integrity attack” C=“command
injection”)

Attack FINDCORRELATION
Belief

Propagation
Anomaly

Reasoning
T 7.60ms 0.21ms 41.39ms
D 0.48ms 0.10ms 19.76ms
C 2.65ms 0.14ms 13.95ms

VI. CONCLUSION

In this paper, we propose a causal-polytree-based anomaly
reasoning framework for SCADA networks, named CAPTAR.
CAPTAR takes the meta-alerts from EDMAND and performs
alert correlation and attack plan recognition. Experiments
using a prototype of CAPTAR and simulated traffic show that
CAPTAR is able to detect and differentiate various attack
scenarios in a real-time manner. The generated reasoning
results can provide the operators with a high-level view of
the security state of the protected SCADA network.

ACKNOWLEDGMENT

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000780.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] W. Ren, T. Yardley, and K. Nahrstedt, “EDMAND: Edge-Based Multi-
Level Anomaly Detection for SCADA Networks,” in 2018 IEEE In-
ternational Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2018, pp. 1–
7.

[2] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer,
2001, pp. 54–68.

[3] F. Cuppens, “Managing alerts in a multi-intrusion detection environ-
ment,” in acsac. IEEE, 2001, p. 0022.

[4] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated
detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1-2, pp. 105–136, 2002.

[5] A. Siraj and R. B. Vaughn, “Multi-level alert clustering for intrusion
detection sensor data,” in NAFIPS 2005-2005 Annual Meeting of the
North American Fuzzy Information Processing Society. IEEE, 2005,
pp. 748–753.

[6] S. Zhang, J. Li, X. Chen, and L. Fan, “Building network attack graph
for alert causal correlation,” Computers & security, vol. 27, no. 5-6, pp.
188–196, 2008.

[7] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes, “Detection,
correlation, and visualization of attacks against critical infrastructure
systems,” in 2010 Eighth International Conference on Privacy, Security
and Trust. IEEE, 2010, pp. 15–22.

[8] Y. Zhai, P. Ning, P. Iyer, and D. S. Reeves, “Reasoning about com-
plementary intrusion evidence,” in 20th Annual Computer Security
Applications Conference. IEEE, 2004, pp. 39–48.

[9] Z. Zali, M. R. Hashemi, and H. Saidi, “Real-time attack scenario detec-
tion via intrusion detection alert correlation,” in 2012 9th International
ISC Conference on Information Security and Cryptology. IEEE, 2012,
pp. 95–102.

[10] A. Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber
attack detection,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2000, pp. 80–93.

[11] F. Xuewei, W. Dongxia, H. Minhuan, and S. Xiaoxia, “An approach
of discovering causal knowledge for alert correlating based on data
mining,” in 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing. IEEE, 2014, pp. 57–62.

[12] F. Kavousi and B. Akbari, “A Bayesian network-based approach for
learning attack strategies from intrusion alerts,” Security and Communi-
cation Networks, vol. 7, no. 5, pp. 833–853, 2014.

[13] A. A. Ramaki, M. Amini, and R. E. Atani, “RTECA: Real time
episode correlation algorithm for multi-step attack scenarios detection,”
computers & security, vol. 49, pp. 206–219, 2015.

[14] X. Qin, “A probabilistic-based framework for infosec alert correlation,”
Ph.D. dissertation, Georgia Institute of Technology, 2005.

[15] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier, 2014.

[16] W. Ren, T. Yardley, and K. Nahrstedt. (2019, April) Causal
reasoning about attacks in SCADA networks. [Online]. Available:
http://hdl.handle.net/2142/103425

